Skip to content
SME Search Search Results

Displaying 71-80 of 93 results for

2017 or earlier clear Grinding & Deburring clear Tooling & Workholding clear Measurement & Metrology clear Finishing & Coatings clear

Grinding Roots

Until the middle of 2010, first-tier subcontract machinist, JJ Churchill, could produce turbine blades only if they had their fir-tree root-forms preground elsewhere, or if they were subsequently added by another subcontractor. No longer is this the case.

Automating the Grinding Process

Whether the process is cylindrical or profile grinding, automation, which can increase cycle time, throughput, consistency of part quality and taking real-time in-process measurements, is once again in demand. The reasons can be found in the benefits found in typical applications and the innovative and effective forms of automation available from machine builders like United Grinding Technologies Inc. (UGT; Miamisburg, OH), and their automation integrator of choice, Matrix Design Inc. (Elgin, IL).

Pumping Up CNC Productivity

To compete in the fast-paced world of manufacturing, machinists look for no-compromise machine controls offering fast, precision programming of machine tools. The latest CNC systems from machine control developers include a new dual-function milling and turning control and several updated controls with embedded software routines that can significantly speed up CNC programming.

Measure It On The Machine

Why use a metrology device on or near a machine tool? It isn’t just useful for making sure a tool is present or monitoring tools for wear or breakage. On-machine measurement technologies can save time and money, by speeding up processes and eliminating extra personnel, and they are a critical step in the movement towards “lights-out” manufacturing.

The Ins and Outs of In-Line Automated Inspection

The challenges to manufacturing as it evolves into the 21st century are now familiar, and impact how metrology must contribute. Manufacturers face uncertain production volumes with roller-coaster demand, shorter production runs and faster product development cycles. Automation, while alluring as a way to reduce cost, needs to adjust.

Simulation for the Shop Floor

Highly realistic 3-D simulation software can greatly improve manufacturing processes, lending sophisticated visualization tools that help increase manufacturing productivity and product quality.

Big CNC Machine Gives Shop An Aerospace Lift

When a contract manufacturer sees an opportunity in the competitive aerospace market, it sets priorities aimed at providing the right combination of processes required to meet the industry’s exacting demands. Precision machining and finishing, parts inspection, and, of course, certifications from OEMs and industry alliances are at the top of the list. Increasingly, aerospace suppliers like Volvo Aero Connecticut (Newington, CT) are benefiting from five-axis machining, advanced CNC controls, motors and drives, robotic deburring, and on-machine inspection for a competitive advantage.

Tooling It Up for Composites

From Boeing 787s to new Navy destroyers, fiber-reinforced composites are gaining in use. As production scales up, more-efficient manufacturing remains a focus. One key to that efficiency is tooling for composites. These molds and forms give the final shape to a part, and are often integral to their final curing.

Edge Finishing — Product Enhancement or Wasted Cost?

Edge finishing is a relatively new term in manufacturing. It’s a new and deeper focus on what many used to call deburring, edge honing, edge preparation, edge prepping, burring, chamfering, or edge blending. Edge finishing goes beyond any of those definitions. Deburring, which is often considered wasted effort by managers, wrongly carries a negative connotation. In reality, deburring and edge-finishing processes add many benefits to parts—they create highly desirable edge quality—the quality most products need.

Quality Scan: Thread Inspection: Your Application Matters

Not all threaded connections serve similar purposes.The load-carrying needs of an aerospace engine support bolt in a tension assembly greatly exceed those of a simple screw that fastens a cover plate to an electrical wall socket. International thread-acceptance documents and standards recognize this basic engineering fact, and incorporate different thread-inspection requirements into their verification standards.