Skip to content

3D Printing Delivers New, Easy-to-Use Washout Tooling for Composites

By Rick Lucas Chief Technology Officer, The ExOne Company
rick-lucas-002-300x206.jpg
Rick Lucas
Chief Technology Officer
The ExOne Company

With today’s focus on lightweighting, hollow parts made from composite materials, such as ducting, fuel tanks, mandrels, and rocket shrouds, are in higher demand than ever before. The composite ducting market in the aerospace and defense sector alone is expected to reach $864.7 million by 2024, according to a recent report from Stratview Research.

Manufacturing composite parts with hollow features, however, has historically been a time-consuming and expensive endeavor. For decades, sacrificial tooling has been needed to create the core forms for composite layups, which are positioned on the tool by hand, standard prepreg methods, or filament winding. The tool covered in the layup is then autoclaved at high pressures and temperatures to create a final rigid part.

Creating the core tooling for layups has always been a multi-step process that involves molds and other labor-intensive methods. What’s more, it hasn’t always been easy to remove the sacrificial tool after the final composite part has been completed. Today, that process often involves hot solvents, detergents, tools that deflate and, sometimes, a good old-fashioned chisel for removing tools out of the final part.

Final-Composite-Mandrel-Created-from-3D-Printed-Sacrificial-or-Washout-Tooling-from-ExOne-resized-002.jpg
Final composite mandrel created from 3D-printed sacrificial or washout tooling from ExOne.

Several years ago, the R&D team at ExOne — which focuses on binder jet 3D printing of sand, metal and other powders — discovered and developed an extremely easy-to-use new method: 3D printed tooling that washes out with tap water.

This approach is now being used successfully to create carbon- and glass-fiber reinforced composites for Sikorsky, a Lockheed Martin Company; Royal Engineered Composites; and other aerospace and automotive companies, including those in the competitive racing space.

Binder jet 3D printing is a method of building objects in a powder bed by selectively binding thin layers of particles with a bonding agent applied through an array of inkjet print heads. In 2013, our team first discovered they could bind silica sand or ceramic sand particles with a proprietary solvent that remains water soluble to 180°C (356°F).

Our team is always at work developing new binders for a whole host of materials including metallics, minerals, and more. We knew that we could develop water soluble binders, but what application could benefit from 3D printing a solid part that could eventually be washed away? Our engineers with aerospace experience were quick to see the potential value to the composites industry.

After 3D printing the sand tool, we coat it in a proprietary spray that provides a smooth, impenetrable surface for the composite layup and dissolves during the final washout. Or, the part can be wrapped in Teflon tape for easy wind out after the core is washed away.

We also discovered other important benefits as well. Dealing with thermal expansion has always been a challenge during the autoclave process. This expansion must be considered when creating a final part that is dimensionally accurate, and it can particularly challenge some geometries and forms.

However, what is unique with the printed tooling, is that the expansion is driven by the media, or powder, that you are printing. That means it can be changed and controlled by simply changing the powder. For example when printing with silica sand, the coefficient of thermal expansion (CTE) is 20 ppm/°C (11 ppm/°F) which could make sense for certain materials. In other cases, I might need a lower CTE in which case I would print with a ceramic sand and my thermal expansion is closer to 3 ppm/°C (2 ppm/°F). This minimizes distortion and other challenges during autoclaving. Unlike other additive tooling materials, the thermal expansion is also isotropic (x,y,z) resulting in high-quality predictable results.

Filament-Winding-on-3D-Printed-Washout-Tooling-from-ExOne-768x432.jpg
Filament winding on 3D-printed washout tooling from ExOne.

Taken together, ExOne’s low-distortion and easy washout process allows for the creation of innovative new designs and geometries that weren’t previously manufacturable. For example, we have customers creating new and longer mandrel parts, or even tools that have unique integrated hardware features.

Overall, the process of using binder jet 3D printing to manufacture washout tooling is fast and affordable, with little to no concern for part distortion. Our customers compliment the washout for being fast and complete.

What’s more, we’re incredibly proud that our 3D printed washout tooling process is sustainable with little to no waste: All of the washed-out sand can be recovered and reused for future print cycles.

Related Articles

  • Student Chris Baldwin machines a part on a Haas CNC mill.
    Additive Manufacturing & 3D Printing

    HS Students ‘Pedal’ Towards Manufacturing Jobs

    February 28, 2020
    At Temescal Canyon High School in Lake Elsinore, Calif., I’m fortunate to work in a district that is supportive of career-oriented programs.
    By Robert Parks - Engineering Design Teacher, Temescsal Canyon High School
  • Steve George Business Intelligence Manager SME
    Additive Manufacturing & 3D Printing

    Metal Additive Manufacturing on the Upswing

    February 25, 2020
    While it’s still considered early-stage, metal additive manufacturing/3D printing (AM/3DP) is an important part of the growth in the global additive manufacturing market as it helps manufacturers produce stronger and lighter parts, improve efficiencies, reduce waste, lower emissions, and increase speed to market.
    By Steve George - Business Intelligence Manager, SME
  • Using 3D Systems’ new Figure 4 Production Black 10 photopolymer, a single DLP engine produced these 1,200 plastic, finished, end-use components in 48 hours.
    Additive Manufacturing & 3D Printing

    New Polymer Applications in Additive Manufacturing

    February 24, 2020
    The 3D printing of polymers has been around for over 30 years. And as Patrick Dunne, vice president of advanced application development for 3D Systems Inc., Berkeley, Calif., put it, there are significant applications across many different industries.
    By Ed Sinkora - Contributing Editor, SME Media
  • VIEW ALL ARTICLES
  • Latest Videos

  • Connect With SME Media

Always Stay Informed

Receive the latest manufacturing news and technical information by subscribing to our monthly and quarterly magazines, weekly and monthly eNewsletters, and podcast channel.