Skip to content

Power Play

By SME Media Staff

When Brock University needed to replace engines in its power plant, it decided to ‘go green’

Located at the center of Canada’s Niagara Peninsula, Brock University is a public research university in St. Catharines, Ontario, with a total enrollment of over 19,000 students. Graduates enjoy one of the highest employment rates of all Ontario universities—96.5 percent within two years of graduation.

Lead Image IMG_3140 768x432.jpg
Brock University replaced eight old Cat G3516A workhorse engines with four new Cat 3516H engines (unit 3 shown here), which produce 2 mW of electricity each.

Brock is one of a handful of universities in the world located within a UNESCO Biosphere Reserve, an ecosystem that promotes the conservation of biodiversity through sustainable use. When Brock University unveiled the new home of its Environmental Research Sustainability Centre in a restored 19th-century farm cottage last year, it furthered efforts to produce world-class research while educating students in environmental sustainability. The school offers an academic minor, as well as a graduate program that aims to facilitate society’s transition towards sustainability.

But 25 years ago, well before the sustainability movement gained traction, the university commissioned a 6.4 mW district energy plant. The impetus for Brock University to produce its own energy was the rising cost of power from the electric grid—a trend that has continued unabated since the plant began operating in 1994.

Beyond cost savings, energy efficiency is at the heart of Brock University’s district energy system. “The original plant was designed as the university’s primary heat source with a byproduct of electricity. This worked well for almost three decades,” said Scott Johnstone, Brock University’s associate vice president of facilities management. “We refer to it as an energy multiplier, producing heating, cooling, and electricity, all from one fuel source.”

By contrast, most electricity that comes from the grid is derived from coal, nuclear power, or natural gas, and by the time the power reaches its intended destination, the efficiency rating dwindles to around 40 percent or less, according to the U.S. Energy Information Administration.

Image 2 11 Nov.jpg
Brock University is located in a UNESCO Biosphere Reserve.

“In Ontario, electricity is not commonly produced close to the actual user, making it difficult to use any of its waste heat,” said Drew Cullen, Brock University’s district energy manager. “However, with distributed generation you can capture all the energy released and transform it to increase your plant’s efficiency. This results in economies of scale and cost savings.”

A Green Solution

Last summer, Brock University began replacing eight old Cat G3516A workhorse engines with four Cat 3516H engines from Caterpillar Inc., Deerfield, Illinois. The new units, like the older units they replaced, run on natural gas. The new units produce 2 mW of electricity each. Brock will also derive an additional six million BTUs from the engines, while lowering the plant’s consumption of water and natural gas—all of which will significantly reduce the university’s carbon footprint. While the former plant produced 85 percent of Brock University’s energy needs, the new configuration provides 100 percent of the current campus energy demand. In addition, the new plant is 20 percent more efficient, reducing nitrogen oxide emissions by 95 percent and carbon monoxide by 93 percent on a per kilowatt basis.

The increased efficiency of the new G3516H gensets will go a long way in helping Brock meet its goal of a 20 percent reduction in greenhouse gas emissions by 2023.

Brock University received $7.9 million from the government of Ontario to complete Phase 2 of its District Energy Efficiency Project (DEEP), which upgraded and modernized the co-generation facility, according to a statement from the university.

The first, $10.8-million phase of the DEEP project, funded by the University as well as the Strategic Innovation Fund (SIF), a Canadian government program, replaced half of the existing natural gas-powered co-gen engines with the new Cat units, according to a university report. DEEP Phase 2, funded entirely through the Ontario government, replaced the remaining co-gen engines and installed a new high-efficiency electric chiller unit.

Image 3 SJ_Plant.jpg
Scott Johnstone, Brock University’s associate vice president of facilities management.

Jim Bradley, a former member of provincial parliament and Ontario cabinet minister, said the province and Brock University share a common goal: carbon reduction. “This investment by the Ontario government reaffirms its commitment to reducing greenhouse gas emissions on university campuses,” said Bradley, who is now chair of the regional municipality of Niagara. “This will allow the province of Ontario and its postsecondary institutions to lead by example when it comes to being energy efficient.”

Reliable Supply, Resiliency

Another advantage of having a co-generation plant is maintaining a reliable energy supply and campus resiliency in the face of power outages or severe weather. “Many campuses have been considering co-generation as a climate change adaptation tool,” said Mary Quintana, the university’s director of asset management and utilities. “That’s something that Brock has already thought about and acted on—having the ability to be energy self-sufficient in the face of climate change and extreme weather events.”

When a massive blackout darkened the eastern U.S. and a portion of eastern Canada in 2003, the co-generation plant switched to island mode and powered the entire campus. Brock has numerous research-intensive facilities, such as a containment level 3 (CL3) insectiary lab, where scientists disinfect, gown up, and research Zika and West Nile viruses. The lab is used to isolate and identify pathogens that may pose a risk to the staff handling them.

Image 4 Old Engine Room.jpg
The old engine room at Brock University, before the upgrade. Four new Cat engines took the place of eight older units.

Because the co-generation plant can operate on island mode, Brock can protect these valuable facilities. Over the years, the Brock University staff has learned more about how to run the plant and has taken a lead role in the operation and maintenance of the engines. Its Caterpillar dealer, Toromont Power Systems, is called on to perform annual maintenance or attend to any operational issues where additional technical expertise is required.

“Brock has been collaborating with Toromont for more than 25 years to provide reliable, cost-effective energy to our campus community,” Johnstone said. “We’re now advancing this partnership with a new generation of high-efficiency equipment. In addition, we are conducting research together to test new engine oils and additives to extend equipment life, all while making our plant more sustainable.”

Johnstone said savings and efficiencies realized through the plant upgrade will reduce future utility costs, ensure a sustainable operation and keep pace with significant growth of a campus where enrollment has doubled since 2000.

“Sustainability is at the core of all we do at Brock,” Johnstone said. “[Our] journey began in 1964, and [we have] since become a leader in energy management. This project is taking us to the next level of performance efficiency, and represents the beginning of bigger things to come.” |||

  • View All Articles
  • Connect With Us
    TwitterFacebookLinkedInYouTube

Related Articles

Always Stay Informed

Receive the latest manufacturing news and technical information by subscribing to our monthly and quarterly magazines, weekly and monthly eNewsletters, and podcast channel.