IMTS: Fabricating & Lasers Pavilion Shows Need for Constant Improvement
The Fabricating & Lasers pavilion of IMTS shows how makers of machine tools have to keep improving their product lineup. For one thing, customer expectations continue to rise.
The Fabricating & Lasers pavilion of IMTS shows how makers of machine tools have to keep improving their product lineup. For one thing, customer expectations continue to rise.
Additive manufacturing (AM) pioneer Charles Hull introduced the first commercial 3D printer, the SLA-1, in 1987. Jaws dropped, machinists wondered about their next career, pundits said it spelled the death of traditional manufacturing. None of that happened, thankfully; in fact, some said 3D printing was a bunch of hype, good for little more than investment casting patterns and proof of concept prototypes.
To stay current with technology and peer into the future of manufacturing, take a look at our preview of IMTS—The International Manufacturing Technology Show, to be held at McCormick Place in Chicago from Sept. 10 through Sept. 15. In the following pages, ME provides in-depth examinations of each pavilion at IMTS, as well as previews of the products you will be able to see displayed at exhibitors’ booths.
Constant refinement of medical machining from tooling design to finished product requires not only the ability to handle a broad range of plastic and metal materials but also to achieve predictable results—particularly in the face of strict regulations.
Basic trends in modern manufacturing are driving growth in 3D optical metrology. “One is the highly complex and high-tech material that manufacturers are using today. For example, in the aerospace turbine blade market, they simply cannot touch the part like they used to—the surface finish of the material is too readily affected by any kind of contact metrology."
Industrial lasers require cooling to remove excess heat generated in the resonator power electronics and the optics system. The type of cooling required is determined by laser wattage, resonator efficiency, resonator and optics temperature requirements, and ambient temperature.
While laser marking and engraving are well-established processes, innovations and investments in the sector are continuing to push performance boundaries.
For ABB, robotic welding comes down to a never-ending process of ensuring parts are suitable for laser joining and developing the appropriate processes. To that end, ABB is refining a recent innovation to improve beam delivery speeds and has developed software for on-the-fly welding in tandem with Trumpf’s Intelligent Programmable Focusing Optic (IPFO).
From producing lithium-ion batteries to processing sheetmetal, new laser welding systems are “pushing the envelope” of light absorption, beam control, speed and programming flexibility.
Sometimes succession of a family business from one generation to the next doesn’t always go as planned. Take, for example, Laser Specialists Inc. (Fraser, MI). Incorporated in 1986, the company was positioned at the forefront of laser cutting technology.