Skip to content
SME Search Search Results

Displaying 51-60 of 251 results for

2020 or earlier clear Tooling & Workholding clear

Edge Finishing — Product Enhancement or Wasted Cost?

Edge finishing is a relatively new term in manufacturing. It’s a new and deeper focus on what many used to call deburring, edge honing, edge preparation, edge prepping, burring, chamfering, or edge blending. Edge finishing goes beyond any of those definitions. Deburring, which is often considered wasted effort by managers, wrongly carries a negative connotation. In reality, deburring and edge-finishing processes add many benefits to parts—they create highly desirable edge quality—the quality most products need.

When Clamps Aren’t the Answer

Workholding techniques using a magnetic field, a vacuum, or an adhesive can be effective alternatives to clamps. When these techniques are used, more part area is available for the cutting tools, thin parts can be held, and initial setup can be fast and simple. Plus, there is a potential for smoother surfaces and a shorter overall production cycle.

Innovations in Medical Manufacturing

Medical manufacturing, like other industries, faces intensive demands for improved productivity. As a result, many manufacturers are focused on achieving greater efficiencies and precision in making small parts.

Rising to Toolholding Challenges

Difficult materials and high-speed machining don’t just present problems for cutting tools. They can also push toolholders to their limits—and beyond. So manufacturers offer a variety of products designed to get the toolholding job done under extreme machining conditions.

Tooling It Up for Composites

From Boeing 787s to new Navy destroyers, fiber-reinforced composites are gaining in use. As production scales up, more-efficient manufacturing remains a focus. One key to that efficiency is tooling for composites. These molds and forms give the final shape to a part, and are often integral to their final curing.

The Increasingly Perfected Science of Machining Composites

A 1965 Shelby Cobra 427 shown at the Detroit Auto Show was additively manufactured on a Cincinnati BAAMCI machine by DOE’s Oak Ridge National Laboratory (ORNL), one of seven founding members of the Institute for Advanced Composites Manufacturing Innovation. The Detroit IACMI branch will get $70 million to develop a robust supply chain to improve materials, handling, and machining properties for automotive composites.

Parting & Grooving: Advanced Tech Delivers Quality Parts, Results

One thing that’s certain in developing the most cost-effective solutions for part-off and grooving applications is that there is not just one way to approach the problem and meet basic process requirements for chip evacuation, tool life and surface finish.