Skip to content
SME Home Search Search Results

Displaying 51-60 of 70 results for

Search Filters: 2017 or earlier clear Lasers clear Materials clear

Lasers Target New Medical Applications

Lasers — well-established tools in the manufacture of medical devices—are continuing to break ground by producing smaller, more precise and more functional parts thanks to faster pulse speeds at lower cost, new applications and the marriage of laser processing to Swiss-style machining.

Lasers Grow Manufacturing

Today, laser technology in manufacturing touches all of our lives on a daily basis; lasers cut air bag material and weld air bag detonators for our in-car safety; lasers weld the batteries in many of our mobile devices; lasers drill aero-engine components for planes; lasers cut the glass for our smart phones and tablets screens; lasers weld the drivetrains in our cars and trucks; lasers cut medical stents that increase and enhance our lives, just to name a few.

Advanced Technologies Supplement: Processes Reduce Composite Costs

Composites engineers are expanding their craft to build more complex, durable parts at higher production volumes. One way they are achieving this objective is by using infusion-molding processes based on Resin Transfer Molding (RTM) and Vacuum Assisted Resin Transfer Molding (VARTM).

Laser Welding Applications Expand

Solid-state laser technology has matured, leading to development of new, cost-effective welding applications, such as hybrid welding

Coatings Expand Cutting Tool Capabilities, Reach New Markets

When first introduced in the late 1970s, cutting tool coatings—especially titanium nitride (TiN)—were embraced by tool manufacturers for their ability to extend tool life. As workforce materials have expanded from conventional ferrous and nonferrous metals to exotic alloys, composites, ceramics, and others, coatings have likewise progressed and, thanks to new formulations and deposition methods, are extending cutting tool capabilities as well as tool life.