Advanced Materials in Automotive
Advanced materials for automotive manufacturing are helping automakers build lighter, more fuel-efficient vehicles.
Advanced materials for automotive manufacturing are helping automakers build lighter, more fuel-efficient vehicles.
Common misperceptions about lean manufacturing and automation systems lead many manufacturing managers to dismiss the use of automation in a lean setting.
An early pioneer in the fields of NC and CAD/CAM software, Patrick J. Hanratty, PhD, discovered his passion for computing and programming almost by accident, answering a newspaper ad seeking programmers in his hometown of San Diego after returning from service in the Air Force during the Korean War.
Cutting tool maker Shape-Master Tool Co. (Kirkland, IL) needed to expand its tool grinding capability beyond that of its conventional machines or run the risk of losing work to the competition.
Workholding techniques using a magnetic field, a vacuum, or an adhesive can be effective alternatives to clamps. When these techniques are used, more part area is available for the cutting tools, thin parts can be held, and initial setup can be fast and simple. Plus, there is a potential for smoother surfaces and a shorter overall production cycle.
From Boeing 787s to new Navy destroyers, fiber-reinforced composites are gaining in use. As production scales up, more-efficient manufacturing remains a focus. One key to that efficiency is tooling for composites. These molds and forms give the final shape to a part, and are often integral to their final curing.
It is common sense—a vehicle that weighs less requires less fuel to move it. A number of studies show that reducing the mass of a vehicle by 10% results in anywhere from 4.5 to 6% better fuel economy—well worth the effort.
Keeping products clean is becoming a more significant part of manufacturing as standards for cleanliness, deburring, and finish grow more stringent.
Robotic machining technology has advanced to where it poses a serious alternative to metalcutting applications on more traditional machining centers. With the latest robotics equipment and related software, automation suppliers and robotic system integrators are gaining some traction using robots in many material-removal applications previously done only with machine tools.
One of the most cost-effective ways to obtain the benefits of automation is by adding a bar feeder to a CNC lathe or other bar machine. Costing anywhere from about $10,000 to $40,000 depending on configuration, the devices can add hours of untended operating time for part volumes of a few hundred to tens of thousands.