Skip to content
SME Search Search Results

Displaying 111-120 of 246 results for

Smart Manufacturing clear Materials clear Manufacturing Management clear Measurement & Metrology clear Software clear Quality/Inspection/Test clear Plastics clear

Metal Parts Follow Tough Plastics Act

When you walk into the Redeye On Demand facility in Eden Prairie, MN, you enter into one version of the factory of the future. There you will see a bank of 100 high-end Fortus fused-deposition modeling (FDM) machines from Stratasys that provide the capacity to build real, functional parts with production-grade thermoplastics directly from CAD data.

Tooling to Match Composite Production

It’s getting harder to imagine any market that isn’t benefiting from the latest developments in parts manufactured from advanced composites. “Advanced composites will arguably dominate consumer and production products, especially in the near future,” says Bert Erdel, industry consultant and executive technology advisor, Morris Group Inc. (Windsor, CT), “as they have begun to gain wide acceptance in solving energy-related issues.”

Solutions for Difficult Machining

The machining challenges for two of the most advanced concepts in cutting tool materials are pretty well known. Cubic boron nitride (CBN) tools of varying designs are being used to cut hardened ferrous metals with or without interrupted cuts, as well as welded and clad metals.

Cutting Tools for Composites

Machining composites presents unique challenges compared to metals. Reinforcement fibers are abrasive, shortening tool life. The plastic matrix carries away little heat, unlike metal chips, and overheating can melt the matrix.

Advanced Technologies Supplement: Processes Reduce Composite Costs

Composites engineers are expanding their craft to build more complex, durable parts at higher production volumes. One way they are achieving this objective is by using infusion-molding processes based on Resin Transfer Molding (RTM) and Vacuum Assisted Resin Transfer Molding (VARTM).

Cold Sintering Process Saves Energy, Material

Researchers at Penn State University (University Park, PA) have devised a novel method for sintering, a widely used manufacturing process for powdered materials. The new process, which uses much less time and energy than current approaches, could have global implications on manufacturing and energy savings and pave the way for new discoveries.

The Quest for Safer 3D Printing Materials

When Desktop Metal introduced its “office-friendly” Studio metal prototype printer earlier this year, the company renewed attention on the issue of safer materials for binder jetting, an additive manufacturing method.