Co-authors George F. Schrader and Ahmad K. Elshennawy have the wealth of practical experience and technical knowledge of manufacturing processes necessary for the compilation of a comprehensive text on the subject.

Dr. Schrader, currently Professor of Engineering, Emeritus, at the University of Central Florida in Orlando, has an educational background in mechanical engineering, applied mathematics, and industrial engineering. Since 1945 he has taught a variety of courses and coordinated laboratory exercises on the subject of manufacturing at several major universities in the U.S. In addition to his academic work, he has served as a consultant to many manufacturing industries and worked with a number of technical societies on industry-related activities.

Dr. Elshennawy, currently an Associate Professor in the Department of Industrial Engineering and Management Systems at the University of Central Florida, has an educational background in production engineering and industrial engineering. Since 1978 he has taught many courses on manufacturing and manufacturing-related subjects at Alexandria University in Egypt, Pennsylvania State University, and the University of Central Florida. Dr. Elshennawy’s greatest expertise is in the area of precision measurement and manufacturing automation, subject areas in which he acquired considerable experience while working at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.
Table of Contents

1 Manufacturing Foundations

1.1 Manufacturing ... 1

1.2 Hand Tools to Machine Tools ... 1
1.2.1 Early Hand Tools, 1.2.2 The Iron Age, 1.2.3 Industrial Revolution, 1.2.4 Automation

1.3 Types of Products ... 5

1.4 Organization for Manufacturing .. 5
1.4.1 Types of Manufacturing Systems, 1.4.2 Small Organizations, 1.4.3 Large Organizations, 1.4.4 Manufacturing Engineering

1.5 Questions ... 10

2 The Competitive Challenge in Manufacturing

2.1 Importance of Manufacturing as an Economic Activity .. 13

2.2 State of the Industry ... 13

2.3 Labor Productivity .. 14

2.4 International Competitiveness ... 16
2.4.1 Balance of Trade, 2.4.2 Trade Agreements

2.5 Manufacturing Innovations ... 18
2.5.1 Machine Tools, 2.5.2 Manufacturing Systems

2.6 Questions ... 21

3 Material Properties and Testing

3.1 Metal Structures ... 23
3.1.1 Unit Cells, 3.1.2 Changes in Crystal Structure, 3.1.3 Crystalline Structure and Physical Properties, 3.1.4 Fracture

3.2 Fundamentals of Metal Alloys ... 27
3.2.1 Metallic Solid Solutions and Compounds, 3.2.2 How Alloys Melt, 3.2.3 Equilibrium Diagrams, 3.2.4 Alloys in the Solid State, 3.2.5 Grain Growth

3.3 Metallurgy of Iron and Steel ... 33
3.3.1 Iron and Iron Carbide Solid Solutions, 3.3.2 Pearlite, 3.3.3 Hypoeutectoid and Hypereutectoid Steels, 3.3.4 Martensite, 3.3.5 Other Structures of Steel, 3.3.6 Practical Aspects of Carbon in Steel, 3.3.7 Grain Size of Steel, 3.3.8 Solidification of Cast Iron

3.4 Testing of Engineering Materials ... 38
3.4.1 Tension Test, 3.4.2 Hardness Testing, 3.4.3 Notched-bar Impact Testing, 3.4.4 Bend Tests, 3.4.5 High-temperature Tests, 3.4.6 Fatigue Testing, 3.4.7 Fracture Toughness Tests, 3.4.8 Nondestructive Testing, 3.4.9 Corrosion Testing

3.5 Questions ... 52

3.6 Problems ... 53
4 IRON AND STEEL
4.1 Iron, Steel, and Power ... 57
4.2 Iron Making .. 57
4.3 The Blast Furnace and its Chemistry ... 59
4.4 Steelmaking .. 59
 4.4.1 The Basic Oxygen Process, 4.4.2 The Electric-furnace Process
4.5 Finishing and Ingot Teeming ... 64
4.6 Special Techniques in Steel Refining .. 65
4.7 Aluminum .. 65
4.8 Copper ... 66
4.9 Miscellaneous Metals ... 68
 4.9.1 Magnesium, 4.9.2 Zinc, 4.9.3 Lead, 4.9.4 Tin, 4.9.5 Titanium, 4.9.6 Tungsten
4.10 Steel ... 69
4.11 Effects of Alloying Elements in Ferrous Alloys 69
4.12 Carbon Steels .. 71
4.13 Alloy Steels ... 72
4.14 Questions .. 76

5 NONFERROUS METALS AND ALLOYS
5.1 Effects of Alloying on Properties ... 79
5.2 Aluminum ... 80
 5.2.1 Aluminum Alloys
5.3 Magnesium .. 81
 5.3.1 Magnesium Alloys
5.4 Copper ... 83
 5.4.1 Copper Alloys
5.5 Zinc ... 84
 5.5.1 Zinc Alloys
5.6 Titanium .. 85
 5.6.1 Titanium Alloys
5.7 Nickel and its Alloys .. 86
5.8 The White Metals .. 86
5.9 Refractory Metals .. 86
5.10 Precious Metals ... 87
5.11 Questions .. 87

6 ENHANCING MATERIAL PROPERTIES
6.1 Heat Treatment Principles ... 89
6.2 Heat Treatment of Nonallotropic Alloys 90
6.3 Heat Treatment Processes for Steels ... 91
 6.3.1 Steel Hardening, 6.3.2 Annealing of Steel
6.4 Surface-hardening of Steel .. 99
 6.4.1 Induction-hardening, 6.4.2 Flame-hardening, 6.4.3 Comparison of Methods,
 6.4.4 Carburizing to Case-harden, 6.4.5 Cyaniding, 6.4.6 Nitriding, 6.4.7 Laser Beam
 Hardening, 6.4.8 Electron Beam Hardening
6.5 Heat Treatment of Nonferrous Metals ... 103
6.6 Heat-treating Furnaces .. 103
 6.6.1 Hearth Furnaces, 6.6.2 Rotary Furnaces, 6.6.3 Continuous Furnaces, 6.6.4 Furnace
 Atmospheres, 6.6.5 Molten Baths for Heat Treating, 6.6.6 Bath Furnaces
6.7 Design Considerations for Heat Treatment ... 109
6.8 Cost Considerations ... 109
6.9 Process Automation ... 109
6.10 Questions .. 109

7 NONMETALLIC MATERIALS
7.1 Nonmetallic Material Families ... 111
7.2 Plastic Materials .. 112
 7.2.1 Resins and Polymers, 7.2.2 Additives, 7.2.3 Plastic Products, 7.2.4 Thermosetting
 Plastics, 7.2.5 Thermoplastics, 7.2.6 Elastomers (Rubbers), 7.2.7 Silicones, 7.2.8 Adhesives
7.3 Plastics Processing .. 126
 7.3.1 Compression Molding, 7.3.2 Transfer Molding, 7.3.3 Injection Molding,
 7.3.4 Casting, 7.3.5 Extrusion and Pultrusion, 7.3.6 Foams, 7.3.7 Laminates and
 Reinforced Plastic Molding, 7.3.8 Forming Plastic Sheets, 7.3.9 Shell Molding,
 7.3.10 Joining Plastics, 7.3.11 Machining Plastics, 7.3.12 Rubber Processing
7.4 Design of Molded Plastic Parts ... 135
7.5 Ceramics ... 136
 7.5.1 Structure, 7.5.2 Clay Products, 7.5.3 Refractory Materials, 7.5.4 Glass,
 7.5.5 Cermet s, 7.5.6 Mechanical and Electrical Applications, 7.5.7 Ceramic Cutting Tools
7.6 Questions ... 138
7.7 Problems ... 139

8 METAL CASTING EXPENDABLE MOLDS
8.1 Sand Casting Principles ... 141
 8.1.1 The Behavior of Cast Metal, 8.1.2 The Mold and Its Components
8.2 Making Molds ... 146
 8.2.1 Hand Tools for Molding, 8.2.2 Mold-making Steps, 8.2.3 Molding Machines
8.3 Cores .. 149
 8.3.1 Core Making
8.4 Patterns ... 153
 8.4.1 Types, 8.4.2 Material, 8.4.3 Layout, 8.4.4 Shrinkage Allowance, 8.4.5 Other
 Allowances, 8.4.6 Draft, 8.4.7 Fillets, 8.4.8 Locating Pads, 8.4.9 Color Coding
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Sands and Other Mold Ingredients</td>
<td>156</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Molding Sand, 8.5.2 Core Sand</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Melting Metals in the Foundry</td>
<td>161</td>
</tr>
<tr>
<td>8.6.1</td>
<td>The Cupola, 8.6.2 Melting of Nonferrous Metals</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>Pouring and Cleaning Castings</td>
<td>168</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Pouring Methods, 8.7.2 Cleaning Castings</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>Shell Mold Casting</td>
<td>169</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Advantages</td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td>Metallurgy of Castings</td>
<td>171</td>
</tr>
<tr>
<td>8.9.1</td>
<td>Cast Iron, 8.9.2 Nonferrous Cast Alloys</td>
<td></td>
</tr>
<tr>
<td>8.10</td>
<td>Design of Castings</td>
<td>173</td>
</tr>
<tr>
<td>8.10.1</td>
<td>Draft, 8.10.2 Tolerances</td>
<td></td>
</tr>
<tr>
<td>8.11</td>
<td>Questions</td>
<td>174</td>
</tr>
<tr>
<td>8.12</td>
<td>Problems</td>
<td>181</td>
</tr>
<tr>
<td>9</td>
<td>Metal Casting Reusable Molds</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Metal Mold Casting Processes</td>
<td>183</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Permanent Mold Casting, 9.1.2 Low-pressure Casting, 9.1.3 Slush Casting, 9.1.4 Die Casting, 9.1.5 Die-casting Dies, 9.1.6 Die-casting Machines, 9.1.7 Finishing Die Castings, 9.1.8 Centrifugal Casting, 9.1.9 Comparison of Metal Mold-casting Methods, 9.1.10 Designing Castings for Metal Molds</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Plaster Mold Casting</td>
<td>191</td>
</tr>
<tr>
<td>9.3</td>
<td>Precision Investment Casting</td>
<td>193</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Advantages and Limitations</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>Continuous Casting</td>
<td>195</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Applications, 9.4.2 Advantages and Limitations</td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>Questions</td>
<td>196</td>
</tr>
<tr>
<td>9.6</td>
<td>Problems</td>
<td>196</td>
</tr>
<tr>
<td>10</td>
<td>Powder Metallurgy</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>199</td>
</tr>
<tr>
<td>10.2</td>
<td>Basic Powder Metallurgy Process</td>
<td>199</td>
</tr>
<tr>
<td>10.3</td>
<td>Metal Powder Production and Blending</td>
<td>200</td>
</tr>
<tr>
<td>10.4</td>
<td>Fabrication Processes</td>
<td>201</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Pressing or Compaction, 10.4.2 Sintering</td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td>Finishing Operations</td>
<td>206</td>
</tr>
<tr>
<td>10.6</td>
<td>Metal Composites</td>
<td>207</td>
</tr>
<tr>
<td>10.7</td>
<td>Design of Powder Metal Parts</td>
<td>207</td>
</tr>
<tr>
<td>10.8</td>
<td>Process Automation</td>
<td>207</td>
</tr>
<tr>
<td>10.9</td>
<td>Questions</td>
<td>208</td>
</tr>
<tr>
<td>10.10</td>
<td>Problems</td>
<td>209</td>
</tr>
</tbody>
</table>
11 HOT AND COLD WORKING OF METALS

11.1 Wrought Metals

11.2 Hot Working

11.3 Cold Working

11.4 Warm Working

11.5 Rolling

- 11.5.1 Principles, 11.5.2 Rolling Mills, 11.5.3 Hot-rolling Steels, 11.5.4 Cold Rolling, 11.5.5 Quality and Cost

11.6 Cold Drawing

11.7 Manufacture of Pipe and Tubing

11.8 Forging

- 11.8.1 Heating the Work, 11.8.2 Hammer Forging, 11.8.3 Drop Forging, 11.8.4 Drop Hammers, 11.8.5 Press Forging, 11.8.6 High-energy-rate Forging, 11.8.7 Upset Forging, 11.8.8 Forging with Rolls, 11.8.9 Quality and Cost

11.9 Extrusion

- 11.9.1 Principles, 11.9.2 Hot Extrusion, 11.9.3 Cold Extrusion

11.10 Questions

11.11 Problems

12 METAL SHEARING AND FORMING

12.1 Introduction

12.2 Metal Shearing Operations

- 12.2.1 Types, 12.2.2 Principles

12.3 Bending

- 12.3.1 Punch and Die Bending, 12.3.2 Tube and Structural Shape Bending, 12.3.3 Cold-roll Forming

12.4 Drawing and Stretching

- 12.4.1 Rigid Die Drawing, 12.4.2 Flexible Die Drawing and Forming, 12.4.3 Hydrostatic Forming, 12.4.4 Metal Spinning, 12.4.5 Roll Turning, 12.4.6 Stretching and Shrinking, 12.4.7 High-energy-rate Forming, 12.4.8 Ultrasonic Aid to Forming

12.5 Squeezing

- 12.5.1 Cold Heading; 12.5.2 Swaging; 12.5.3 Sizing, Coining, and Hobbing; 12.5.4 Ironing; 12.5.5 Riveting, Staking, and Stitching

12.6 Presses

- 12.6.1 Frame and Bed, 12.6.2 Press Ram, 12.6.3 Press Drives, 12.6.4 Hydraulic Presses, 12.6.5 Power Transmission, 12.6.6 Applications, 12.6.7 Specialized Presses, 12.6.8 Press Brakes and Shears, 12.6.9 Hole-punching Machines, 12.6.10 High-production Presses

12.7 Press Tools and Accessories

- 12.7.1 Dies, 12.7.2 Stock-feeding Devices, 12.7.3 Safety Devices

12.8 Questions

12.9 Problems
13 WELDING PROCESSES

13.1 Introduction ...291

13.2 Common Welding Process Classifications ..291

13.3 Electric-arc Welding ..291

13.3.1 Parameters, 13.3.2 Applications, 13.3.3 Electrodes, 13.3.4 Manual Arc Welding,
13.3.5 Automatic Arc Welding, 13.3.6 Sources of Current, 13.3.7 Gas-shielded Arc Welding,
13.3.8 Plasma-arc Welding, 13.3.9 Submerged-arc Welding, 13.3.10 Vertical Welding,
13.3.11 Stud Welding

13.4 Energy-ray Welding ..302

13.4.1 Electron-beam Welding, 13.4.2 Laser Welding

13.5 Resistance Welding ...306

13.5.1 Fundamentals, 13.5.2 Equipment, 13.5.3 Spot Welding,
13.5.4 Projection Welding, 13.5.5 Seam Welding, 13.5.6 Upset-butt Welding,
13.5.7 Flash-butt Welding, 13.5.8 Percussion Welding

13.6 Thermit Welding...314

13.6.1 Principles, 13.6.2 Procedures, 13.6.3 Applications

13.7 Gas Welding ..316

13.7.1 Fuel Gases, 13.7.2 Oxyacetylene Gas Welding

13.8 Solid-state Welding ..318

13.8.1 Friction Welding, 13.8.2 Ultrasonic Welding, 13.8.3 Explosion Welding,
13.8.4 Diffusion Bonding

13.9 Welding Fundamentals ...320

13.9.1 Welded Joints and Welding Symbols, 13.9.2 Metallurgy of Welding,
13.9.3 Control of Weld Quality

13.10 Cost Comparisons ...326

13.10.1 Welding Costs, 13.10.2 Comparison of Welding and Casting, 13.10.3 Comparison
of Welding and Riveting, 13.10.4 Comparison of Arc-Welding Processes

13.11 Process Automation ..330

13.12 Questions ..330

13.13 Problems ...332

14 OTHER CUTTING AND JOINING PROCESSES

14.1 Introduction ...335

14.2 Thermal Cutting Processes ..335

14.2.1 Oxygen Cutting, 14.2.2 Electric Arc Cutting, 14.2.3 Plasma-arc Cutting (PAC)

14.3 Metal Spraying ...341

14.3.1 Principles and Methods, 14.3.2 Applications

14.4 Surfacing and Hard-facing ..343

14.4.1 Principles, 14.4.2 Procedures

14.5 Braze Welding, Brazing, and Soldering ..344

14.5.1 Braze Welding, 14.5.2 Brazing, 14.5.3 Soldering, 14.5.4 Process Automation

14.6 Mechanical Fastening or Joining ..347

14.6.1 Nonpermanent Fasteners, 14.6.2 Permanent Fasteners
17.5 Metal-cutting Tools ... 423
 17.5.1 Tool Material, 17.5.2 Shapes and Forms
17.6 Cutting Fluids ... 435
 17.6.1 Purpose, 17.6.2 Types
17.7 Questions .. 437
17.8 Problems ... 438

18 TURNING, BORING, AND FACинг
18.1 Turning Operations .. 441
 18.1.1 Plain or Straight Turning, 18.1.2 Chuck Work, 18.1.3 Taper Turning and Boring
18.2 The Lathe ... 442
 18.2.1 Principal Parts, 18.2.2 Power Feed, 18.2.3 Types, 18.2.4 Sizes, 18.2.5 Tracer Lathe
18.3 Accessories And Attachments .. 447
 18.3.1 Chucks, 18.3.2 Collets, 18.3.3 Centers and Drivers, 18.3.4 Rests, 18.3.5 Digital Readout Systems, 18.3.6 Attachments
18.4 Lathe Operations .. 452
 18.4.1 Practical Tolerances and Surface Finishes
18.5 Production Turning Machines ... 453
 18.5.1 Turret Lathes, 18.5.2 Automatic Turning Machines
18.6 Machining Time and Material Removal Rate ... 465
18.7 Questions ... 467
18.8 Problems ... 468

19 PROCESS PLANNING AND COST EVALUATION
19.1 Introduction .. 471
19.2 Preproduction Process Planning ... 471
 19.2.1 Design for Manufacturability, 19.2.2 Planning Methods and Procedures
19.3 Process Plan Development .. 475
 19.3.1 Routing Information, 19.3.2 Process Mapping, 19.3.3 Operation Sheets
19.4 Economics of Process Planning ... 482
19.5 General Considerations for Machine Tool Selection .. 482
 19.5.1 Size and Capacity, 19.5.2 Strength and Power, 19.5.3 Other Considerations
19.6 How Costs are Estimated and Compared .. 484
 19.6.1 Productive Time, 19.6.2 How Operation Time is Estimated, 19.6.3 Comparison of Engine Lathe and Turret Lathe, 19.6.4 Finding the Lowest Cost for an Operation, 19.6.5 Equal Cost Point, 19.6.6 Special Considerations
19.7 Questions ... 491
19.8 Problems ... 492

20 DRILLING AND ALLIED OPERATIONS
20.1 Drills, Boring Tools, and Reamers .. 496
 20.1.1 Common Drills, 20.1.2 Drill Sizes and Materials, 20.1.3 Drill Angles and Edges,
 20.1.4 Deep Hole Drills, 20.1.5 Boring Tools, 20.1.6 Reamers
20.2 Drilling Machines ...501
 20.2.1 Vertical Drill Presses, 20.2.2 Multispindle Drill Presses,
 20.2.3 Radial Drill Presses, 20.2.4 Sizes of Drilling Machines
20.3 Drilling Machine Accessories and Attachments ...506
 20.3.1 Toolholders and Drivers, 20.3.2 Multiple-spindle Drill Heads,
 20.3.3 Workholding Devices, 20.3.4 Positioning Tables, 20.3.5 Fixtures and Jigs
20.4 Boring Machines ..510
 20.4.1 Precision Production-boring Machines, 20.4.2 Precision Jig-boring Machines,
 20.4.3 Jig Grinding Machines, 20.4.4 Jig Boring Operations
20.5 Drilling and Boring Operations ..513
 20.5.1 Accuracy, 20.5.2 Speeds and Feeds, 20.5.3 Drilling Time and Cost,
 20.5.4 Cutting Forces and Power
20.6 Process Planning ..517
 20.6.1 Design for Manufacturing, 20.6.2 Process Selection and Operation Sequence
20.7 Questions ...518
20.8 Problems ..520

21 MILLING
 21.1 Evolution of Flat Surface Generating Processes ...523
21.2 Milling Process ..523
21.3 Milling Cutters and Drivers ...524
 21.3.1 Kinds of Cutters, 21.3.2 Arbors, Collets, and Adapters
21.4 Milling Machines ..526
 21.4.1 General-purpose Machines; 21.4.2 Production Machines; 21.4.3 Machine Sizes;
 21.4.4 Planer-type Machines; 21.4.5 Horizontal Boring, Drilling, and Milling Machines;
 21.4.6 Machine Attachments
21.5 Process Planning ..536
 21.5.1 Performance; 21.5.2 Economical Milling; 21.5.3 Speed, Feed, and Depth of Cut;
 21.5.4 Estimating Time and Power; 21.5.5 Comparison with Other Operations
21.6 Questions ...542
21.7 Problems ..543

22 BROACHING AND SAWING
 22.1 Broaching ..547
 22.1.1 Types of Broaches, 22.1.2 Pullers and Fixtures, 22.1.3 Machines,
 22.1.4 Operations, 22.1.5 Broaching Compared with Other Operations
22.2 Sawing ..557
 22.2.1 Saw Characteristics, 22.2.2 Machines, 22.2.3 Operations
22.3 Questions ...563
22.4 Problems ..563

23 ABRASIVES, GRINDING WHEELS, AND GRINDING OPERATIONS
 23.1 Abrasives ...567
 23.1.1 Conventional Abrasives, 23.1.2 Superabrasives, 23.1.3 Grain Size
23.2 Grinding Wheels ..570
 23.2.1 Properties, 23.2.2 Manufacture
23.3 Other Abrasive Products ..573
 23.3.1 Coated Abrasives, 23.3.2 Polishing Wheels, 23.3.3 Abrasive Belts
23.4 Grinding Operations ..574
 23.4.1 The Factors of Cost, 23.4.2 Balancing the Grinding Wheel, 23.4.3 Dressing and Truing the Grinding Wheel, 23.4.4 Theory, 23.4.5 Cutting Fluids, 23.4.6 Economics
23.5 Questions ..585
23.6 Problems ..587

24 GRINDING MACHINES AND METHODS
24.1 Precision Grinders ..589
 24.1.1 Cylindrical Center-type Grinders, 24.1.2 Chucking Grinders, 24.1.3 Centerless Grinders, 24.1.4 Comparison of Center-type and Centerless Grinders, 24.1.5 Internal Grinding, 24.1.6 Surface Grinders, 24.1.7 CNC Grinding Machines, 24.1.8 Disk Grinders, 24.1.9 Thread Grinders, 24.1.10 Tool and Cutter Grinders, 24.1.11 Miscellaneous Grinders, 24.1.12 Abrasive Belt Grinders
24.2 Nonprecision Grinders ..606
 24.2.1 Swing-frame Grinders, 24.2.2 Floor-stand and Bench Grinders, 24.2.3 Portable and Flexible-shaft Grinders, 24.2.4 Standard Tool and Cutter Grinders
24.3 Grinding Compared with Other Operations ..606
24.4 Questions ..609
24.5 Problems ..610

25 ULTRA-FINISHING OPERATIONS
25.1 Lapping ..613
 25.1.1 Purpose, 25.1.2 Process, 25.1.3 Machines
25.2 Honing ..615
 25.2.1 Purpose, 25.2.2 Process, 25.2.3 Machines, 25.2.4 Fine Grinding
25.3 Microfinishing or Superfinishing ..618
 25.3.1 Purpose, 25.3.2 Process, 25.3.3 Machines and Attachments, 25.3.4 Ultrasonic Machining
25.4 Burnishing and Bearingizing ..621
 25.4.1 Roller Burnishing, 25.4.2 Bearingizing
25.5 Nonprecision Deburring and Finishing Processes ..623
 25.5.1 Polishing, 25.5.2 Buffing, 25.5.3 Power Brushing, 25.5.4 Tumbling and Vibratory Finishing, 25.5.5 Shot Blasting and Sandblasting, 25.5.6 Deburring
25.6 Process Planning ..627
25.7 Questions ..628

26 OTHER SURFACE ENHANCEMENT PROCESSES
26.1 Cleaning ..631
 26.1.1 Cleaners, 26.1.2 Methods, 26.1.3 Pickling and Oxidizing
Table of Contents

26.2 Surface Coatings
- 26.2.1 Conversion Coatings
- 26.2.2 Organic Coatings
- 26.2.3 Hot-dip Plating
- 26.2.4 Electroplating
- 26.2.5 Electroforming
- 26.2.6 Vacuum Deposition
- 26.2.7 Other Metal-coating Processes
- 26.2.8 Vitreous Coatings

26.3 Green Manufacturing
- 26.3.1 Environmental Regulations

26.4 Questions

26.5 Problems

27 NONTRADITIONAL MANUFACTURING PROCESSES

- 27.1 Chemical Machining Processes
- 27.1.1 Chemical Milling
- 27.1.2 Photo-etching
- 27.1.3 Thermochemical Machining

- 27.2 Electrochemical/Electrolytic Machining Processes
- 27.2.1 Electrochemical Machining (ECM)
- 27.2.2 Electrochemical Grinding
- 27.2.3 Electrogel Machining (EGM)

- 27.3 Thermal Machining Processes
- 27.3.1 Electron Beam Machining (EBM)
- 27.3.2 Laser Beam Machining (LBM)
- 27.3.3 Electrical Discharge Machining (EDM)

- 27.4 Waterjet Machining (WJM)

27.5 Questions

27.6 Problems

28 THREAD AND GEAR MANUFACTURING

- 28.1 Screw Threads and Screws
- 28.1.1 Definitions
- 28.1.2 Features
- 28.1.3 Forms
- 28.1.4 Standards
- 28.1.5 Classes
- 28.1.6 Measurement
- 28.1.7 Making Screw Threads

- 28.2 Gears
- 28.2.1 Gear Tooth Curves
- 28.2.2 Elements of Gear Teeth
- 28.2.3 Types of Gears
- 28.2.4 Gear Manufacture
- 28.2.5 Gear Inspection

28.3 Questions

28.4 Problems

29 MANUFACTURING SYSTEMS

- 29.1 Introduction

- 29.2 Manufacturing Systems
- 29.2.1 Classification

- 29.3 Contemporary Manufacturing Technologies
- 29.3.1 Just-in-time (JIT) Manufacturing
- 29.3.2 Flexible Manufacturing Systems (FMS)
- 29.3.3 Coordinate Measuring Machines (CMMs)
- 29.3.4 Group Technology (GT)
- 29.3.5 Robotics
- 29.3.6 Automation

- 29.4 Emerging Technologies
- 29.4.1 Total Quality Management (TQM)
- 29.4.2 Rapid Prototyping and Manufacturing
- 29.4.3 Concurrent Engineering (CE)
29.5 Components of an Integrated Manufacturing System ... 728
 29.5.1 Manufacturing and Assembly Cells, 29.5.2 Cell Linkages, 29.5.3 Systems Integration Elements, 29.5.4 The New Manufacturing Enterprise Wheel
29.6 Questions .. 734

30 FLEXIBLE PROGRAM AUTOMATION
30.1 Classes of Automation .. 739
 30.1.1 Fixed Program Automation
30.2 Manned Cell Partial Automation .. 749
 30.2.1 Material Handling, 30.2.2 Work Positioning and Clamping, 30.2.3 Inspection,
 30.2.4 Machine Operation, 30.2.5 Digital Numerical Control, 30.2.6 Fuzzy Control Logic
30.3 Unmanned Cell Automation ... 754
 30.3.1 Machining Centers, 30.3.2 Decouplers, 30.3.3 Robots, 30.3.4 Automated Inspection
30.4 Computer Integration ... 759
 30.4.1 Computer-aided Design, 30.4.2 Computer-aided Process Planning,
 30.4.3 Computer-aided Manufacturing, 30.4.4 Computer Integration of an Unmanned Cell
30.5 Economic Justification of an Automated System .. 762
30.6 Questions .. 764
30.7 Problem ... 764

31 NUMERICAL CONTROL
31.1 Introduction ... 767
31.2 Elements of Numerical Control ... 767
 31.2.1 NC Operation, 31.2.2 The Coordinate System, 31.2.3 Positioning,
 31.2.4 Closed- and Open-loop Systems, 31.2.5 Adaptive Control
31.3 Numerical Control (NC) Systems ... 777
 31.3.1 NC Machines, 31.3.2 Machining Centers, 31.3.3 NC Accuracy,
 31.3.4 NC Adjuncts, 31.3.5 NC Measuring and Inspection Machines
31.4 Programming for Numerical Control ... 782
 31.4.1 Manual Programming, 31.4.2 Computer-assisted NC Programming
31.5 Selection of a Programming Method.. 801
31.6 NC in the Total Manufacturing System .. 802
31.7 Economics of Numerical Control .. 803
31.8 Questions .. 805
31.9 Problems ... 806
To order call
1-800-733-4763

or visit
www.sme.org/store

and search on book title