Ergonomics in Manufacturing

Raising Productivity Through Workplace Improvement

Edited by Waldemar Karwowski and Gavriel Salvendy

Published by Society of Manufacturing Engineers
Dearborn, Michigan
CONTENTS

PREFACE ....................................................................................................................... xiv

1 ERGONOMICS IN PLANT OPERATIONS ...................................................... 1
Gavriel Salvendy, NEC Professor of Industrial Engineering,
Purdue University, West Lafayette, IN

2 PARTICIPATORY ERGONOMICS—A PRACTICAL GUIDE
FOR THE PLANT MANAGER ................................................................. 5
Donald Day, Consultant in Ergonomics and Health Promotion,
Greenwood Village, CO
What is Participatory Ergonomics? ......................................................... 5
The Benefits ........................................................................................................... 6
   Is Participatory Ergonomics Best?, Assess Readiness, Moving
   Toward Participatory Ergonomics, Getting Started, Analysis Process
Keeping it Going ......................................................................................... 20
   Monitoring Progress and Evaluating the Process, Methods
Opportunities ............................................................................................. 26

3 LOWERING COSTS THROUGH ERGONOMICS ................................. 29
Hal W. Hendrick, Emeritus Professor of Human Factors,
University of Southern California
Case Studies ........................................................................................................ 30
   Forestry Industry, Material Handling Systems, Workstation
   Redesign, Reducing Work-related Musculoskeletal Disorders
Human Factors Test and Evaluation .............................................................. 38
   Macroergonomics

4 MANUFACTURING WORKSTATION DESIGN ................................. 43
Biman Das, Professor, Industrial Engineering,
Department of Industrial Engineering,
Dalhousie University, Halifax, Nova Scotia, Canada
Applying Engineering Anthropometry to Workstation Design ... 44
Adjusting Anthropometric Data ............................................................... 45
Determining Workstation Design Parameters ............................. 45
Determining Workstation Dimensions ............................................ 48
   Work Height, Normal and Maximum Reaches, Lateral Clearance,
   Angle of Vision and Eye Height
Case Studies ...................................................................................................... 50
   Supermarket Checkstand Workstation
Computerized Human Modeling Programs for Workstation
Design ............................................................................................................... 54
   CYBERMAN, COMBIMAN, CREW CHIEF, JACK, SAMMIE, MANNEQUIN
5 A DESIGN AND SELECTION GUIDE FOR HAND HELD TOOLS ........................................ 65
F. Aghazadeh, Associate Professor, 
S.M. Waly, Assistant Professor, 
Industrial and Manufacturing Systems Engineering Department, 
Louisiana State University, Baton Rouge, LA
Evolution of Tools ................................................................. 65
  Two Categories, Proper Matching, Anatomy of the Upper Extremities
Injuries and Illnesses from Hand Held Tools ......................... 71
  A Survey, Injury Parameters
Principles of Hand Tool Design .............................................. 75
  Effects of Grip Type, Size, and Shape; Effects of Gloves; Effects of Wrist Position; Effects of Tool Weight and Muscle Group
Safety Considerations ........................................................... 81

6 COMPUTER-AIDED DESIGN FOR ERGONOMICS AND SAFETY ................................... 87
Markku Aaltonen, Project Manager, 
Finnish Institute of Occupational Health, Yantaa, Finland
Markkus Mattila, Professor, Vice-Rector, 
Tampere University of Technology, Tampere, Finland
Gathering Safety Data .......................................................... 87
  Standardization
Safety Management Information Systems ............................ 89
  Supportive Safety Information; Job Risk Assessment and Participatory Safety and Health; Training and Instructional Software Packages; Simulation Softwares for Ergonomics; Job Design Tools for Ergonomics; Integrated Systems for Occupational Safety, Health, and Ergonomics; Examples of Computer-aided Design for Ergonomics; Interactive Ergonomic-oriented Production System Design; TRANSOM JACK™ Human Modeling; IGRIP Software
Integration of Safety and Ergonomics ................................. 102

7 ERGONOMICS TRAINING AND EDUCATION FOR WORKERS AND MANAGERS .............. 107
Marilyn Joyce, Director, 
The Joyce Institute/A Unit of Arthur D. Little, Seattle, WA
Characteristics of Good Training ........................................... 107
  Nature of the Adult Learner, Role of the Trainer/Facilitator, The Environment
Five Phases ........................................................................ 110
  Planning, Development, Delivery, Measuring the Impact, Integration and Improvement
Job-specific Training ........................................................... 117
Managers; Health and Safety Professionals; Manufacturing Engineers; Supervisors, Technicians, Ergonomics Team Leaders, Labor Representatives; Employees; Medical and Human Resource Professionals

8 ASSESSING PHYSICAL WORK LOAD ............................................ 121
Veikko Louhevaara, Professor, Regional Institute of Occupational Health and University of Kuopio, Kuopio, Finland
Juhani Smolander, Senior Researcher,
Tatiana Aminoff, Researcher,
Juhani Ilmarinen, Professor,
Finnish Institute of Occupational Health, Yantaa, Finland
Physical Load at Work ........................................................ 121

9 STATIC WORK LOAD AND ENDURANCE TIMES ...................... 135
Nico J. Delleman, Jan Dul,
NIA TNO, Amsterdam, The Netherlands
Maintaining Working Postures ............................................. 135
  Perceived Discomfort, Maximum Holding Time, Maximum Holding Time versus Discomfort, Maximum Acceptable Level of Discomfort
Workstation Design and Adjustment ..................................... 139
  Sewing Machine Operation, Press Operation, Hand Positions Standards ........................................................................ 145
  Scope, Contents
Work-rest Model ................................................................. 146
  Software, Example

10 WORKER STRENGTH EVALUATION: ERGONOMIC AND LEGAL PERSPECTIVES ..................................................... 153
Patrick G. Dempsey, Researcher, Liberty Mutual Research Center for Safety and Health, Hopkinton, MA
Musculoskeletal Disorders .................................................... 153
  Ergonomic Job Design
Methods of Strength Evaluation ............................................ 154
  Isometric Testing, Isokinetic Testing, Isoinertial Testing, Comparing Strength Evaluation Methods, Selecting a Strength Evaluation Method
Legal Implications ............................................................... 158
  The Americans with Disabilities Act, Examples
11 METHODS FOR EVALUATING POSTURAL WORK LOAD ........167
   W. Monroe Keyserling, Professor, Industrial and
   Operations Engineering, The University of Michigan, Ann Arbor, MI
Work Posture ................................................................. 167
   Health Effects of Awkward Posture, Productivity Effects of Awkward
   Posture, Posture Analysis Methods, Exposure Assessment Methods,
   Root Cause Analysis Methods
A Case Study ................................................................. 181
   Pre-change Analysis, Ergonomic Changes, Post-change Analysis

12 MANUAL MATERIAL HANDLING: DESIGN DATA BASES.......189
   Christin L. Shoaf,
   Ashraf M. Genaidy,
   University of Cincinnati, Cincinnati, OH
Models ................................................................. 189
Examples .............................................................. 200
Reducing Exposure to Manual Material Handling Hazards ... 203

13 ASSESSMENT OF MANUAL LIFTING—
   THE NIOSH APPROACH .............................................. 205
   Thomas R. Waters, Research Physiologist,
   Vern Putz-Anderson, Ergonomist,
   National Institute for Occupational Safety and Health,
   Applied Psychology and Ergonomics Branch, Cincinnati, Ohio
The Body of Work ...................................................... 205
   Recommended Weight Limit (RWL), Measurement Requirements,
   Lifting Index (LI), Miscellaneous Terms, Equation Limitations,
   Horizontal Component, Vertical Component, Distance Component,
   Asymmetry Component, Frequency Component, Special Frequency
   Adjustment Procedure, Coupling Component
Procedures ................................................................. 223
   Step 1: Collect Data, Step 2: Single- and Multi-task Procedures
Applying the Equations ................................................ 230
   Using the RWL and LI to Guide Ergonomic Design, Rationale and
   Limitations for LI, Job-related Intervention Strategy
Example Problems ...................................................... 231

14 PERSPECTIVE ON LIFTING BELTS
   FOR MATERIAL HANDLING ......................................... 243
   Dr. Malgorzata J. Rys, Assistant Professor,
   Department of Industrial and Manufacturing Systems Engineering,
   Kansas State University, Manhattan, KS
   Dr. Luis Rene Contreras, Professor,
   Department of Industrial and Manufacturing Engineering,
   Institute of Engineering and Technology,
   Autonomous University of Ciudad Juarez, Ciudad Juarez, Chihuahua, Mexico
Prevention Attempts ........................................................... 244
  Personnel Training, Personnel Selection, Job Design
External Support Devices .................................................... 245
  Back Support Belts, Weight-lifting Belts, Industrial Back Support
  Belts, Unknown Factors
Rationale for Using Back Support Belts ............................... 249
  Effect of Back Support Belts, Epidemiological Research
Physical Research .............................................................. 253

15 TRAINING AND EDUCATION IN BACK INJURY PREVENTION ........................................... 265
  Glenda L. Key, KEY Method, Minneapolis, MN
  Impact Points ..................................................................... 265
    Prior to the Hire, After the Hire
Prevention Programs .......................................................... 267
    Audit Assessment, Back Belts, Education, Ergonomics, Exercise,
    Fitness
Functional Capacity Assessments ........................................ 273
    FCA Principles, FCA Reporting and Outcomes, FCA
    Standardization
Functional Therapy ............................................................ 280
    Job Analysis
Job Placement Assessments ................................................ 282
    JPA Outcomes, “Tool Box Talks”

16 AN OVERVIEW OF UPPER EXTREMITY DISORDERS ................. 287
  J. Steven Moore, Professor of Engineering,
  Co-director of NSF I/UCRC in Ergonomics,
  Texas A&M University, College Station, TX
  Five Disorders .................................................................... 287
    Trigger Finger and Trigger Thumb, de Quervain’s Tenosynovitis,
    Peritendinitis, Lateral Epicondylitis, Carpal Tunnel Syndrome

17 CUMULATIVE TRAUMA DISORDERS IN INDUSTRY ................. 305
  Fadi A. Fathallah,
  Patrick G. Dempsey,
  Barbara S. Webster,
  Liberty Mutual Research Center for Safety and Health, Hopkinton, MA
  What are CTDs? ................................................................. 305
    CTD Incidence and Costs, Common CTDs in Industry, CTD Risk
    Factors
  Surveillance Methods ........................................................ 311
    Passive Surveillance, Active Surveillance
  Prevention and Control of CTDs in Industry ....................... 314
18 ANSI-Z365 STANDARD: CONTROL AND PREVENTION OF CUMULATIVE TRAUMA DISORDERS .......... 317
Marvin J. Dainoff, Professor, Psychology, and Director,
Center for Ergonomic Research, Miami University, Oxford, OH
Developing ANSI-Z365 ...................................................... 317
The ANSI Role
The Process ........................................................................... 318
The Accredited Standards Committee, Compliance
Structure and Content .......................................................... 320
Components
Issues and Concerns .......................................................... 323
Additional Factors
Other Standards ................................................................. 324

19 MANAGING WORK-RELATED MUSCULOSKELETAL INJURIES .............................................. 327
Gary A. Mirka, Assistant Professor,
Carolyn M. Sommerich, Assistant Professor,
North Carolina State University, Raleigh, NC
Three-Tier System ............................................................ 327
Widespread Commitment
Management’s Role .......................................................... 328
Human Resources’ Role ..................................................... 331
Engineering’s Role ............................................................ 340
The Supervisor’s Role ......................................................... 342
The Operator’s Role ........................................................... 344
Medical Management’s role ................................................. 346
The Safety Specialist’s Role ................................................... 347
Roles for Other Production Support Groups ....................... 348
Integration

20 ERGONOMICS: PART OF CONTINUOUS IMPROVEMENT ..... 351
Steven L. Johnson, Professor of Industrial Engineering,
University of Arkansas, Fayetteville, AR
Terminology ........................................................................ 352
Right and Wrong Terms
Effective Implementation of Ergonomics ......................... 353
Policy and Procedures Document, Employee Involvement,
Ergonomics Committee, Surveillance Methods, Job-site Analysis
Methods, Ergonomics Training
Medical Management Program ........................................ 365
Prevention
21 VIBRATION-INDUCED CUMULATIVE TRAUMA DISORDERS…369
Donald E. Wasserman, Human Vibration Consultant,
Cincinnati, OH
The Nature of Vibration .......................................................... 369
Whole-body Vibration .............................................................. 370
Hand-arm Vibration ................................................................. 371
Vibration Measurements .......................................................... 373
   Standards
Controlling Vibration in the Workplace ................................... 376

22 EVALUATING ERGONOMICS PROGRAMS …………………..381
Gary B. Orr, Industrial Engineer, OSHA,
Office of Ergonomic Support,
Department of Labor-Occupational Safety and Health Administration,
Washington, DC
David C. Alexander, President,
Auburn Engineers, Auburn, AL
The Ergonomics Process and Its Evaluation ............................ 382
   Management Commitment, Employee Involvement
Control and Prevention of Occupational Health Hazards…….. 386
   Work Site Analysis, Hazard Prevention, Medical Management,
   Training, The Bottom Line
Control of Conditions Affecting Performance....................... 391
Evaluating Products of the Organization ................................. 392
Outreach within the Trade ..................................................... 393
Contributions to the Technical/Legislative Community .......... 394

23 AUDITING ERGONOMICS ……………………………………….. 397
Colin G. Drury, Professor, State University of New York at Buffalo,
Department of Industrial Engineering, Buffalo, NY
Measurement, Change, and Auditing ....................................... 397
   Why Audit Ergonomics?
Choices for an Audit System ................................................... 399
   Types of Checklists, Audit Design
How to Audit Ergonomics ....................................................... 402
An Ergonomics Audit Example ................................................. 407
Lessons from Auditing .......................................................... 409

24 ECONOMIC EVALUATIONS OF ERGONOMIC INTERVENTIONS …………………… 413
James R. Buck, Department of Industrial Engineering,
University of Iowa, Iowa City, IA
Benefits and Costs ............................................................. 414
Interest Calculations and Discounted Cash Flows
Inspection Economics ........................................................... 425
Inspection Costs, Rate Considerations in Inspection, Location of the Inspection Station
Economics of Learning .......................................................... 430
Training and Transfer
Lifting Belts and Economics .................................................. 436

25 WORLDWIDE CORPORATE ERGONOMICS EFFORTS—USA .............................................. 439
Brian Peacock, Manager, Manufacturing Ergonomics Laboratory,
General Motors Corporation
The Growth of Ergonomics ..................................................... 440
The Profession
Polarization of Physical and Cognitive Ergonomics .......... 442
Physical Ergonomics in Industry ............................................. 443
Organizational Factors, Ergonomics Programs, Cumulative Trauma Disorders
Commercial Opportunities ...................................................... 447
Training, Job Analysis, Physical Devices
The Problem of Science and Standards ............................... 453
Consensus, Ergonomics Standards
Exposure—The Time Factor .................................................... 458
Teams
Objectives of Ergonomics ..................................................... 460
Fitting the Tasks, Preventing Unwanted Outcomes
Anthropology of Work .......................................................... 462

26 CORPORATE ERGONOMIC EFFORTS IN GERMANY .................. 465
Hans-Jörg Bullinger, Professor, Head,
Fraunhofer Institute for Industrial Engineering (IAO), Stuttgart, and Head
Institute for Human Factors and Technology Management (IAT),
University of Stuttgart, Germany
Martin Braun, Research Scientist,
Institute for Human Factors and Technology Management (IAT),
University of Stuttgart, Germany
Rainer Schopp, Head Product Design,
Fraunhofer Institute for Industrial Engineering (IAO),
Stuttgart, Germany
Evolution of Ergonomics ..................................................... 465
Motives of Ergonomics .......................................................... 466
Economic Efficiency, Humanization, Normative and Legal Aspects,
Sociodemographic Development
Institutions Involved in Ergonomics ............................................ 468
  Public Institutions and Programs, Science and Research Institutions
Ergonomic Design ................................................................. 472
  Goals, Applications, Design Requirements and Methods, Examples of Ergonomic Design

27 CORPORATE ERGONOMIC EFFORTS IN SWEDEN ............ 485
  Åsa Gabrielson, Åsa Gabrielson, Åsa Gabrielson, Åsa Gabrielson, Åsa Gabrielson,
  Jörgen Eklund, Jörgen Eklund, Jörgen Eklund, Jörgen Eklund, Jörgen Eklund,
  Division of Industrial Ergonomics, and Center for Studies of Humans, Technology and Organization,
  Linköping University, Sweden
  Gunnella Westlander, Professor, Division of Industrial Ergonomics,
  Linköping University, Sweden
  Strategies on the National Level ........................................... 486
    Internal Control, Impact of the Swedish Foundation of Work Life
Ergonomics as a Professional Field ...................................... 490
Ergonomic Equipment for Industrial Production ................... 490
Cases from the Manufacturing and Service Industries .......... 491
    The Case of ABB, Automotive Cases—Volvo and Saab,
    Sociotechnical Job Design in Sawmills, Service Industry—Tools for Ergonomic Improvements

28 ERGONOMICS AND TQM .................................................. 505
  Holger Luczak, Professor,
  Kai Krings, Stefan Gryglewski,
  Georg Stawowy,
  Institute of Industrial Engineering and Ergonomics, Aachen, Germany
  TQM Philosophy .................................................................. 505
  Objectives of Ergonomics .................................................. 508
    Ergonomics as a Change Agent
Health Promotion in TQM .................................................... 514
    Occupational Safety and Health as a Quality Target, Economics and Health Promotion
Organizational Development through Health Promotion ..... 523
    Areas of Conflict, The Problem of Applying TQM

INDEX ................................................................................. 533
To order call
1-800-733-4763

or visit
www.sme.org/store
and search on book title