

2023 Digital Manufacturing Challenge powered by SME's DDM Advisory Team

The webinar titled

Fundamentals of Geometric Dimensioning and Tolerancing, Part I

will begin shortly

https://www.sme.org/aboutsme/awards/digital-manufacturing-challenge/

Fundamentals of Geometric Dimensioning and Tolerancing (GD&T) -Part I-

٨

&

*

#

.

A

B

C-

Host: Carl Dekker

President MetL-Flo and Chair of the Direct Digital Manufacturing Advisory Team

Moderator: Jason Fox Speaker: Jaime BerezSpeaker: Maxwell

Mechanical Engineer National Institute of Standards and Technology (NIST)

Ph.D. Candidate, Instructor Georgia Institute of Technology

Mechanical Engineer National Institute of Standards and Technology (NIST)

2023 Digital Manufacturing Challenge powered by SME's DDM Advisory Team

Theme: AM to the Rescue: Digital Manufacturing Agility to Address Crises

Deadline: February 27, 2023 (11:59 PM)

NEW THIS YEAR: High school and undergraduate students are highly encouraged to prepare a submission! Tiers have been added to separate High School, Undergraduate, and Graduate student submissions and a winner from each tier will be identified. Updated Submission Requirements - Geometric Dimensioning and Tolerancing included in Requirements (university students)

https://www.sme.org/aboutsme/awards/digital-manufacturing-challenge/

Fundamentals of GD& Treminar series overview

Part 1

February 3^d, 2023

Speakers

Jaime Berez Georgia Institute of Technology

Topics

- Introduction to imprecision in manufacturing
- Tolerancing systems (ASME Y14.5, etc.)
- Datums, form, orientation, location, and size
- The 'symbolic language' of GD&T– feature control frames & more

Part 2

February 17th, 2023

Speakers

Jaime Berez *Georgia Institute of Technology* Maxwell Praniewicz *National Institute of Standards and Technology*

Topics

- Designer checklist for implementing GD&T
- Example implementation
- Case studies! (Focus on digital manufacturing)

Introductions

i.berez@gatech.edu

- Ph.D. Candidate, Georgia Institute of Technology
 - Instructor, ME 3210, Design Materials, and Manufacture ٠
 - Research: Fatigue, manufacturing process monitoring, metal AM, dimensional metrology, NDE
- B.S. Mechanical Eng., University of Maryland, College Park •

811181118181181 928 104 3

• Prior experience: Aerospace, automotive

02/03/2023

(a)

20.

10

-10

- 5

-X-

- Z -

Problems:

- (1) Communication between stakeholders
- (2) Manufacturing imprecision
- (3) *Meaningful* geometric specification
- **Solution:** Geometric dimensioning and tolerancing (GD&T)

Problem 1: Communication between stakeholdersGeorgia Tech

Problem 2: Imprecision in manufacturing

No manufacturing method is perfectly precise

- Nothing is ever exactly 1in, 10 mm... etc. in size
- Nothing is 'perfectly' flat, round, square... etc.

Therefore, how do engineers specify what size they want something to be, and how do manufacturers achieve that?

Problem 2: Imprecision in manufacturing (example) Gr Georgia Tech.

Just because it's <u>digital</u> doesn't mean the manufacturing process is perfect

Problem 3Meaningfugeometric specification

Problem:

- Exact dimensions don't acknowledge imprecision... so let's use**tolerances**
- Tolerances must be unambiguous and easily interpreted

Solution:

• Designers define **tolerance zones** which the workpiece must fall in to be 'in-spec'

Solution: GD&T

Problems:

- (1) Communication between stakeholders
- (2) Manufacturing imprecision
- (3) *Meaningful* geometric specification

Solution: Geometric dimensioning and tolerancing (GD&T)

Today's seminar will cover fundamentals like...

- Dimensioning & tolerancing systems (e.g., ASME Y14.5)
- GD&T essentials
 - Datums & datum reference frames
 - Geometric characteristics & features of size
 - Feature control frames & engineering drawing practices

Applications covered in Part II

Dimensioning and tolerancing systems

Dimensioning & tolerancing systems

Direct dimensioning, aka plus/minus tolerancing

- Only appropriate to use with features of size
- Difficult to interpret designer intention without the larger context of GD&T

Dimensioning & tolerancing systems

Geometric dimensioning and tolerancing, as per ASME Y14.5-2018

- ASME Y14.5 is the bulk of all GD&T concepts
- ASME Y14 committee publishes supporting standards such Y14.5.1M (GD&T math), Y14.1 (drawing sheet size), Y14.1 (digital product defn.)

Geometric product specification, as per ISO TC 213 series, e.g., ISO 1101:2017

• ISO technical committee (TC) 213 publishes over 20 standards which are like chapters in the overall concept of GPS

ASME-ISO comparison

- Highly similar symbolic language & associated definitions

 if you learn one you will know 90% of the other
- Disagree on:

Exact implementation of datums, the envelope principle as a default, third-and first-angle projections, drawing style, some symbols, etc.

ASME Y14 landing page https://www.asme.org/codesstandards/y14-standards

ISO TC 213 landing page https://www.iso.org/committe e/54924.html

Why use GD&T/GPS?

- Functional related to component functionality
- Unambiguous clearly defined and standardized
- Inspectable -

specifications relate to inspection methods

16

Map of GD&T

Datums & datum reference frames

Why do we need datums?

Q: Where is point 1?

Insights on the problem:

- Location is relative!
- By picking a location and orientation for the block within a coordinate system we can answer the question. *Nominally*: (25, 50, 50)
- By placing a workpiece in a coordinate system, we effectively constrain its **degrees of freedom**

A: Place the workpiece in a coordinate system.

Degrees of freedom

- There are six degrees of freedom (DoF) in the motion of a *rigid body*
- By placing the workpiece in a coordinate system, we effectively constrain all 6 DoF

DoF	Motion
1.	Translation in X (x)
2.	Translation in Y (y)
3.	Translation in Z (z)
4.	Rotation about X(u)
5.	Rotation about Y(v)
6.	Rotation about Z (w)

Why do we need datums?

Solution: Define a *specific* coordinate system relative to features on the workpiece! We call this the **datum reference frame.**

Datums

Datum feature: A <u>nonideal physical</u> reference from which a theoretically exact datum is derived

Datum: A <u>perfect theoretical</u> feature which forms a reference from which a <u>location or</u> <u>orientation</u> is established

Datum simulator: A precision embodiment of the datum feature.

Datum reference frame: A set of datum features which establish a coordinate system

Starrett

Datum features Planes and cylinders

Many features can serve as datums – planes and cylinders are common. <u>At maximum</u>, a planar datum controls **2 rot.** and **1 trans.** DoF. <u>At maximum</u>, a cylindrical datum controls **2 rot.** and **2 trans.** DoF.

Datums- Drawing conventions

Many acceptable ways to apply datums to the drawing!

- -A-, -B-, and -C- refer to planar surfaces
- -D- refers to a median plane between two surfaces
- -E- refers to a cylinder

SECTION A-A SCALE 1:2

Selecting functional datums will be covered in Part II.

Geometric attributes & geometric characteristics

Map of GD&T

Geometric attributes

GD&T concepts categorize geometry to have 4 possible attributes

Your job as the drafter is to control **geometry**, not just size. GD&T is the tool.

Geometric characteristics

Geometric characteristic	Symbol	Geometric attribute	Datum referencing?
Straightness	_		No.
Flatness]	- Form	
Circularity	{		
Cylindricity	}		
Profile of a line	!	Profile (<i>location,</i> <i>orientation, size, & form</i>)	Sometimes datum referencing
Profile of a surface	~		
Angularity	^	Orientation	Datum referencing
Perpendicularity	&		
Parallelism	*		
Position	#	Location	Datum referencing
Circular runout	;	Runout (<i>location of a</i>	Datum referencing
Total runout	\	cylinder)	
Concentricity	\$	Elim. in ASME Y14.5 2018	Datum referencing
Symmetry	%		

The feature control frameReview

*Material condition modifiers not covered in this seminar

Form-Straightness

Straightness controls deviation of a surface line element or a feature axis from a perfect linear geometry [] Datum referencing [$\sqrt{$] Floating

• Good for: Long, high-aspect features which may need separate size and form control levels

Shigley

Form– Flatness [

Flatness controls deviation of <u>surface</u> from a perfect planar geometry [] Datum referencing [$\sqrt{}$] Floating

• Good for: mating surfaces, faces that must bear lots of load and wear, faces must seal against others, and controlling datum features

Form- Roundness { & Cylindricity

Roundness controls deviation of a <u>2D cross section</u> from perfect circular form. **Cylindricity** controls deviation of a <u>surface</u> from perfect cylindrical form [] Datum referencing [$\sqrt{}$] Floating (shrinks & expands to feature size, too!)

• Good for: Boss-on-bore contact (e.g., bushings), bores/bosses that mate with other features (prevents 'out-of-round'), sliding shaft/bore assembles (prevents binding)

SME Digital Manufacturing Challenge | Fundamentals of GD&T | J. Berez

Orientation-Angularity^

Parallelism , perpendicularity , and angularity control the deviation a <u>surface, axis, or</u> <u>center plane</u> from 0°, 180°, 90°, or X° <u>relative to a datum reference</u>

- $[\sqrt{}]$ Datum referencing [] Floating
- Good for: controlling how well assemblies mate when put together
- Good for: controlling orientation of a bore/boss to a face, relation of faces, nonprimary datums

Orientation- Perpendicularity &

Applications to feature surfaces & axes

SME Digital Manufacturing Challenge | Fundamentals of GD&T | J. Berez

Orientation- Parallelism *

Note: Parallelism is NOT flatness – it has a datum reference

Position#

Position controls the location of a <u>center point, axis, median plane</u> or boundary of a feature of size <u>relative to a datum or DRF</u>

 $[\sqrt{}]$ Datum referencing [] Floating

Profile! & profile of a surface

Profile and **profile of a surface** control the location and/or orientation and/or size of a feature $[\sqrt{\ }]$ Datum referencing $[\sqrt{\ }]$ Floating (It depends!)

- Control a <u>2D cross section's</u> or 3D <u>surface's</u> deviation from their nominal form (no datum reference), orientation and location (with datum references)
- Powerful, but easily abused

Profile! & profile of a surface

Runout, & total runout

Runout and total runout control the form, orientation, and location of <u>surfaces relative to a datum axis</u> [$\sqrt{}$] Datum referencing [] Floating

- Use to control radially symmetric features on rotating assemblies
- Controls 'wobble' of rotating assemblies, controls balance, prevents binding

Feature control framesDrawing conventions

- 1. Use a leader pointing to the feature
- 2. Use an extension line from the feature
- 3. Associate with a feature of size

Georgia Tech.

Geometric characteristics

Geometric characteristic	Symbol	Geometric attribute	Datum referencing?
Straightness	_	— Form	No
Flatness]		
Circularity	{		
Cylindricity	}		
Profile of a line	!	Profile (<i>location,</i> <i>orientation, size, & form</i>)	Sometimes datum referencing
Profile of a surface	~		
Angularity	^	Orientation	Datum referencing
Perpendicularity	&		
Parallelism	*		
Position	#	Location	Datum referencing
Circular runout	;	Runout (<i>location of a cylinder</i>)	Detum asferrareira
Total runout	\		Datum referencing Not too ba

Not too bad, right?

Features of size

Map of GD&T

Features of size

Features of size have opposing surfaces

- The opposing surfaces may be externally or internally facing
- Features of size may use plus/minus tolerancing
- Not a feature of size...
 - Depth
 - Position

it is a feature-of-size

Fig. 2-1 Limit Dimensioning

02/03/2023

Fig. 2-2 Plus and Minus Tolerancing

Fig. 2-3 Indicating Symbols for Metric Limits and Fits

Maximum & minimum material conditions

- Maximum material condition The feature condition which creates the maximum amount of material.
- Least material condition The feature condition which creates the minimum amount of material

Rule #1– The envelope principle

"The form of an individual regular feature of size is controlled by its limits of size"

- The MMC acts like an envelope, therefore a feature of size inherently has form control.
- Form control can be additionally refined via_, [, {, }, !, ∼

GD&T- Summary

Why use GD&T/GPS?

- Functional related to component functionality
- Unambiguous clearly defined and standardized
- Inspectable -

specifications relate to inspection methods

SME Digital Manufacturing Challenge | Fundamentals of GD&T | J. Berez

Resources

Source standards

- ASME Y14.52018
- ISO TC 213 (E.g., ISO 1101:2017)
- Texts & reference books
- "Shigley's Mechanical Engineering Design", 10^h Ed. or newer, Chp. 20
- Machinery's Handbook, 26 Ed. or newer
 - Note that some resource may be slightly out of date
- Professional development through societies or for profit consulting

ISO TC 213 landing page https://www.iso.org/committe e/54924.html

2023 Digital Manufacturing Challenge powered by SME's DDM Advisory Team

Thank you for your time!

Questions?

https://www.sme.org/aboutsme/awards/digital-manufacturing-challenge/

Seminar 2 teaser

Part1: Established the core fundamental concepts of GD&T Part 2: Apply them! Be sure to attend, Feb. 17th 12pm Eastern!

