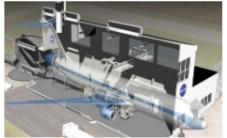
National Aeronautics and Space Administration

Hi-Rate Composite Aircraft Manufacturing (HiCAM) Commercial Transport Needs SME Aerospace Composites Forum, July 19-20, 2022 Dr. Rick Young

NASA Aeronautics – Strategic Thrusts


ARMD Key Subsonic Technologies: TRL 6 by 2027 for Industry Product Decision-Making

Transonic Truss-Braced Wing

Small Core Gas Turbine

Electrified Aircraft Propulsion

High-Rate Composite Manufacturing

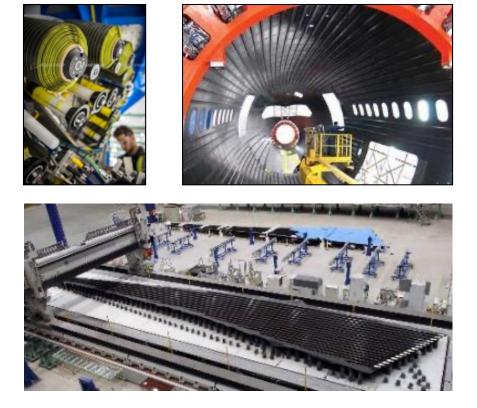
Transport Market Demand & Opportunity

Boeing & Airbus market outlook

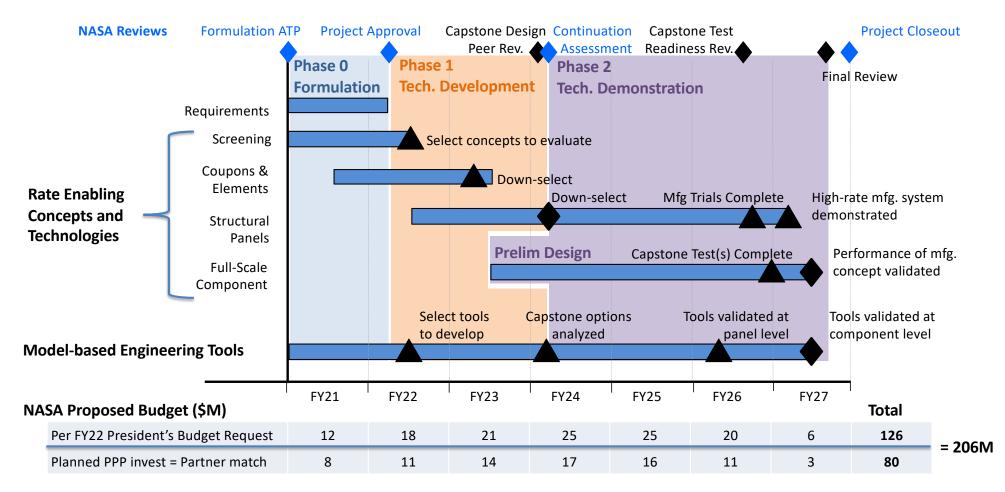
- By 2040, > 43,000 deliveries
 - replace 80% current & double fleet size
 - Single-aisle, 2nd decade: ~150 per month
 - ➔ Industry recommends 80 per month as target production rate
- Historic aircraft production rates per month
 - Metals (B737, A320) : 60 1.3x = 80
 - Composites (B787, A220): 10-14 6x = 80

Increased Emphasis on Sustainability:

- Reduced emissions (reduced weight, drag) \rightarrow Composites: low weight, enables low-drag configs
- Reduced operating cost (acquisition, fuel, maintenance)


Transport Market driving: (1) High volume, earlier deliveries	➔ high-rate production							
(2) cost reductions	→ <50% of current cost							
(3) performance improvements								
Potential AAM market: similar drivers, vehicle rate approaching automotive (1000x)								

Hi-Rate Composite Aircraft Manufacturing (HiCAM)


<u>Goal</u>: Demonstrate manufacturing approaches and associated technologies for <u>large composite primary</u> <u>airframe structures that enable high-rate production</u> (up to 80 aircraft per month) with <u>reduced cost</u> and <u>no weight penalty versus 2020 technology for composite</u> <u>structures</u> for <u>early 2030s</u> single-aisle aircraft production

- Mature, affordable, high-rate composite manufacturing technologies with reduced labor, equipment, and tooling costs
- Model-based engineering tools for high-rate concepts
- Large-scale demo by 2026 (TRL/MRL 6)

HiCAM Schedule & Proposed Budget

Key Partners: Advanced Composites Consortium (ACC)

Phase 0: Tasks Supporting Formulation

	System Requirements, Assessment Process		Manufacturing Technology Assessments						Model-Based Engineering			
			NDE Resin Infusion			Thermoplastic			Thermoset	Thermoset Tool Assessments		
PWP CRT Members	P0-1.1 Req. Def	P0-1.2 Tech Assess Process	P0-2.1 NDE	P0-2.2 Rapid Cure Resins	P0-2.3 Resin Infusion	P0-2.4 Thermoplastic Forming	PO-2.5 Thermoplastic Assembly	P0-2.6 Thermoplastic AFP	P0-2.7 NextGen Thermoset	PO-3.1 Process Models	P0-3.2 Structural Sizing Tools	P0-3.3 Design for Manufacturing
NASA												
ATC Mfg.												
Boeing												
CGTech												
Collier Research												
Electroimpact												
GE												
Hexcel												
Northrop (NGSC)												
Rohr (Collins/RTX)												
Solvay												
Spirit												
Toray												
U of SC												
WSU (NIAR)												

• 12 Cooperative Research Teams, comprised of 3 to 10 members

• Total Value \$16M (including \$8M partner cost share)

Results from Tasks Supporting Formulation

System Requirements and Baseline Definition

- Baseline Components:
 - HiCAM Reference Aircraft for high-rate production market
 - Today's "state of the art" composite construction processes
- Design Requirements and Objectives
 - Commercial airplane requirements
 - Standard Design Objectives, Constraints
- Structural Sizing Plan & Baseline Sizing
 - Common Methods, Commercial Tools
 - Consistent structural sizing for competing concepts

Large-scale Demo Options

- Conceptual Designs
 - Fuselage Barrel Segment, Wing Box, Precursor Articles
- Test Plans: Types and Quantities
- ROM Schedules and Cost Estimates

Calculation of Key Performance Parameters (KPP)

- Component Definition: geometry, manufacturing definition
- Structural Sizing
- Manufacturing Models
 - Activity Level Model;
 Station Definition,
 Precedence, Duration, Cost
 - Discrete Event Simulation; parts & tooling moving through stations; determines # lines for 80 ship-sets per month
- Production Rate (80/mo)
- Non-Recurring Cost (\$B)
- Recurring Cost (\$M)

• Weight

• Factory Area (M sq ft)

Quantitative Technology Assessments for Competing Manufacturing Approaches

- Compare to baseline production system (787 technology)
- Potential impact on KPPs (future state)
- Current state assessment: TRL, MRL
- Technology development roadmaps

HiCAM Scope

 Large composite primary airframe structures

Competing Manufacturing Approaches

- Next Gen Thermosets
 - Evolutionary, lower risk
 - AFP: heating, inspection
 - Automated stiffener forming
 - Shorter autoclave cycle time
 - Paint prep

- Resin Infusion
 - Out-of-autoclave
 - Rapid cure resins
 - Near net shape
 - Integrated structures
 - Unstitched and stitched

- Thermoplastics
 - AFP, out-of-autoclave
 - Tack, secondary oven
 - In situ consolidation
 - Stamping, cont. compression molding, stiffener forming
 - Welding, bonding, repair

Shorter Cycle Time → Less Equipment, Labor → Lower Cost

Commercial Transport: Composites Technology Needs

- High-rate, low-cost manufacturing concepts (labor, equipment; material cost is small factor)
 - Low processing time = less equipment, labor
 → 'new' materials to enable rate
 - Consolidation choices: on the fly, secondary process, oven or autoclave (forgiving)
 - Assembly: Reduced part count (?)
 - Complex unitized versus simple parts & rapid assembly
 - Joining (co-processing, bonding, welding)
 - Inspection: in situ, final product, big data processing
 - Automation: quality, factory flow
 - Factory design for rate (movements, inspection, rework)
 - Design for manufacturing, inspection; machine learning
 - Flaw acceptance: fast, not perfect, but safe
- Lighter weight
 - always desired, but secondary importance

Computational methods

- Concepts lacking historical experience
 - Simulation for rapid development, learning
 - Sizing tools for aircraft program application
- Many variables, simulation to predict trends

Collaboration

- Multiple company teams, supply chain: leverage expertise, resources (funds, facilities)
- Govt, industry, university collaboration for public good
- Integration of manufacturing, inspection and design
- Openness external to team for broad innovation

• Manufacturing project team focus

- Limited scope, defined requirements & objectives
- Technology assessment process, quantitative key performance parameters
- Constrained timeline to drive decisions, down-selects

Summary

- High-rate, low-cost manufacturing of composite structures is key technology in transport market
 - Meet anticipated market demand (80 aircraft/month)
 - Enables sustainability
 - Related benefit to military and Advanced Air Mobility markets
- HiCAM is focused national effort; gov't, industry, universities teaming through public-private partnership
- Considering competing manufacturing approaches
- Down-select based on KPPs for further development and large-scale demonstration
- Transition technologies at TRL / MRL 6 by Project end, 2027

