

Low Cost Agile Manufacturing

Aerospace Composites Forum – 19-20 July 2022

Ray Fisher Aerospace Vehicles Division (AFRL/RQV)

Craig Neslen AFRL Manufacturing and Industrial Technologies Division (AF ManTech)

Agenda

- AF Vision for Low Cost Autonomous Vehicles
- Brief Program History Where are we now?
- Low Cost Attritable System Goals and Objectives
- Composite Structures Projects / Programs Overview
- How to get involved?

Vision for Low Cost Autonomous Systems

UAS offboard augmentation of manned A/C 0 (increased risk tolerance & a force multiplier) Low cost allows large procurements (mass) Single mission configuration (less complex) No depot maintenance (treat as a commodity

Design for Manufacturing in an "attritable" design paradigm:

Tailored Specs/Criteria enable Expanded Manufacturing Approaches to yield Cost, Rate & Agility Advantages

THE AIR FORCE RESEARCH LABORATORY

Initiative / Program History

- Low Cost Attritable Aircraft Technology (LCAAT)
 - Initiated Nov 2014 missions analysis, clean sheet design, design for manufacturing
 - OUSD, SAF/AQR and AFRL
- Low Cost Attritable Strike Demo (LCASD)
 - Kratos award: XQ-58A High sub-sonic; >3,000nm range
 - Runway independent & ~\$3M/vehicle
 - \circ $\,$ Multiple flight tests executed to-date $\,$
- Design for manufacturing activities 2016-Present
 - o Innovative Manufacture of a BQM-167 Aerial Target
 - Low Cost Responsive Tooling
 - Wing Structural Design and Manufacturing
 - Braided Inlet Duct
 - Design for Manufacture of Attritable Aircraft Primary Structure
- Autonomous Collaborative Platforms (ACP): AFRL Capability Portfolio (2020)
 - Low Cost Attritable Aircraft Platform Sharing (LCAAPS) 2 awards
 - Off-Board Sensing Station (OBSS) 2 design awards (Ph1), then build/fly options (TBD)

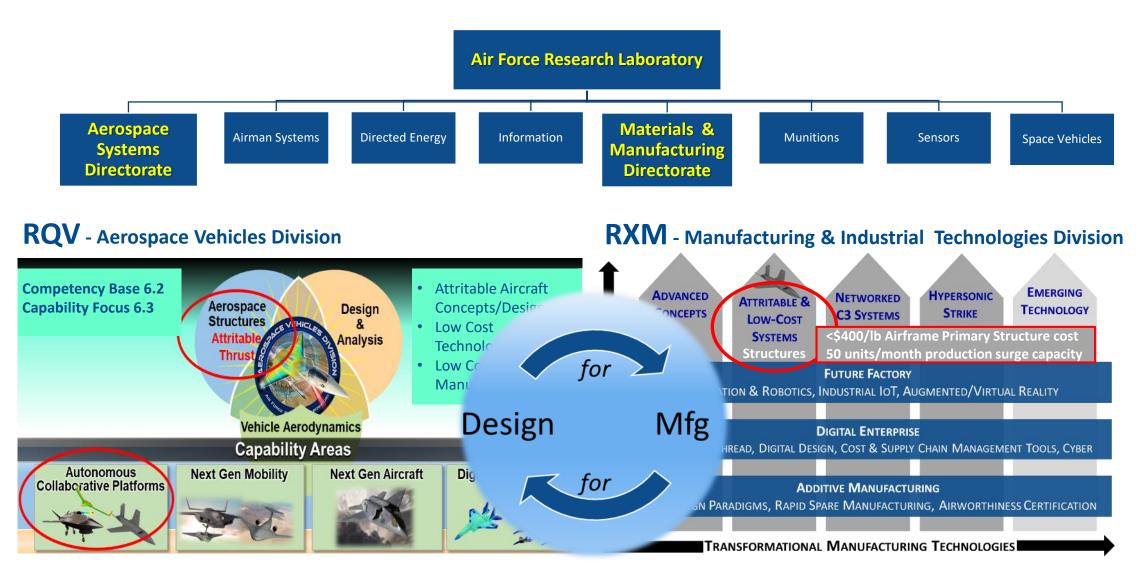
XQ-58A – 5 March 2019 First Flight

Where are ACP today?

- AF 2030 S&T Strategy Document
 - o Identifies 5 critical strategic capabilities
 - Complexity, Unpredictability and Mass
- AFRL Skyborg Vanguard
 - \circ Autonomous flight algorithms
 - Multiple ground & flight tests
 - Vanguards may lead to a Program of Record
- Off Board Sensor Station (OBSS) program
 - Two Ph I airframe design programs in progress
 - \circ Downselection expected fall 2022
 - Ph II Detailed design, fabrication & flight test

"To become more agile, the Air Force must augment its high-end platforms with larger numbers of inexpensive, low-end systems. Swarms of low-cost, autonomous air and space systems can provide adaptability, rapid upgradability, and the capacity to absorb losses..."

SCIENCE AND TECHNOLOGY STRATEGY STIENT HENING USAF SCIENCE AND TECHNOLOGY FOR 2030 AND BEYOND



APRIL 2019

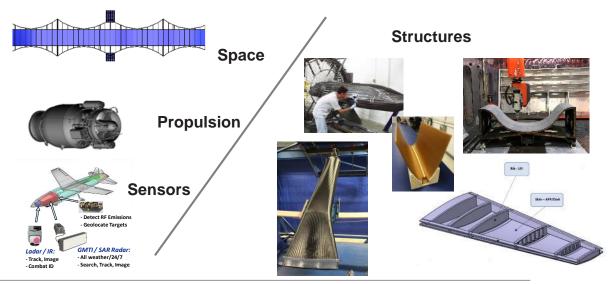
Low Cost Autonomous Systems will become part of tomorrow's Air Force

Low-Cost Attritable Structures at AFRL

THE AIR FORCE RESEARCH LABORATORY

ManTech Low-Cost Attritable Systems – Goals & Areas of Emphasis

OPERATIONAL VISION:


• RESILIENT, MULTI-DOMAIN HIGHLY PROLIFERATED SYSTEMS OF SYSTEMS TO ENHANCE WARFIGHTER CAPABILITIES AND MINIMIZE RISK TO EXQUISITE SYSTEMS

Structures Manufacturing Goal & Objectives:

Goal: <\$400/lb UAV structural fabrication costs w/ 50 units/month production surge capacity **Objectives:**

- 50% cost and procurement time reduction for AM tooling
- Reduce component processing times from 8 hours to ~30 minutes using non-conventional processes
- 50% cost and 70% cycle time reductions using automated processes
- Develop common vehicle design and associated TDP w/ data management architecture

Low Cost Responsive Tooling

Thermwood printed tool - PESU 1810

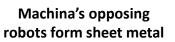
Contractors: Boeing, Thermwood, AES, Cincinnati Inc,

Project Schedule

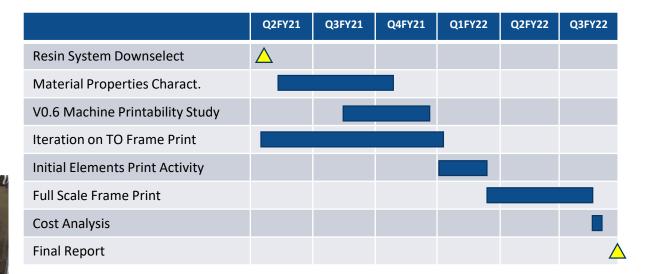
Tasks	FY 16	FY 17	FY 18	FY 19	FY20	FY21	FY22
Phase I							
Phase IDurability Assessment							
Phase II Mid-Scale Tool							
Phase II Full-Scale Tool							
Phase II Durability Assessment							

Description	Delivering		
Leverage carbon fiber filled polymer AM process for the fabrication of large scale composite tooling	 1 Mid-Scale Tool for 250F durability evaluation 1 Full Scale Tool for 350F durability evaluation HandyScan 700 & MaxShot Photogrammetry Systems 		
Technical Approach	Benefits to the Warfighter		
 Evaluate multiple FDM processes/materials Evaluated multiple adhesives and sealers Characterized surface roughness and vacuum integrity Evaluate tool durability at AFRL 	 Reduced cost tooling 20-70% based on tool size and complexity Reduce cycle time from days to hours 50-65% based on tool size and complexity 		

THE AIR FORCE RESEARCH LABORATORY

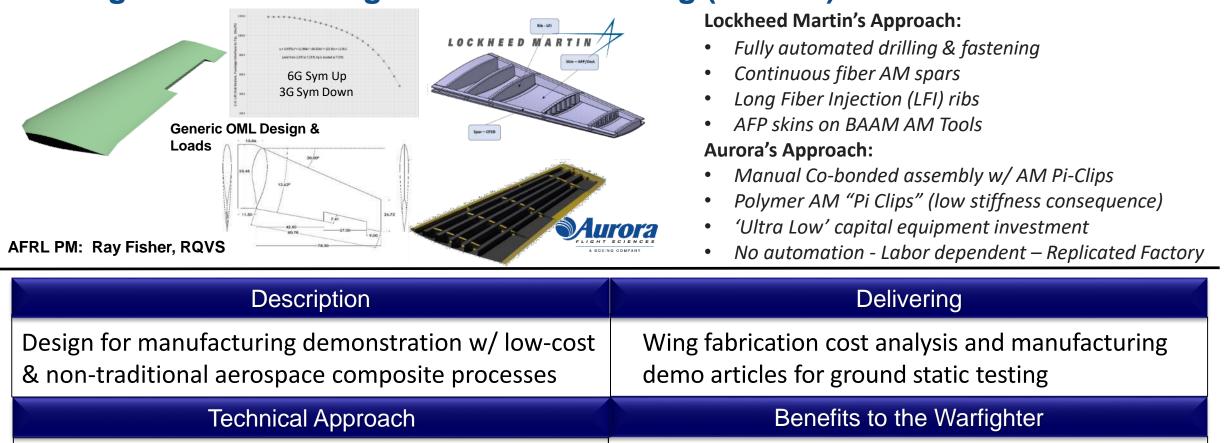


Rapid Metal Tooling for High Rate, Low Cost Composites AFRL



Hat Stiffeners Scaled Wing Skin

Fuselage Builhead

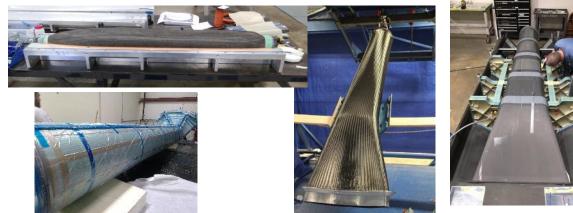


Description	Delivering		
 Leverage Machina's opposing robotic systems for fabrication of inexpensive, rapid reaction tooling 	 Hat Stiffener, fuselage bulkhead and wing skin tools meeting ± 0.020" tolerance requirement 		
Technical Approach	Benefits to the Warfighter		
 Supply Machina with CAD's for multiple parts Iterate forming process to meet tolerance requirements Low temp heat treatment for stress relaxation Deliver tools to TARMACS and CC for demo's Cost and cycle time analysis 	 Extremely inexpensive tooling material (sheet metal) Single day fabrication of complex tools with isotropic material response Complex tool shapes available Sustainment community interest 		

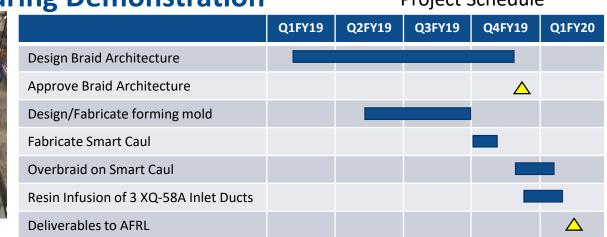
THE AIR FORCE RESEARCH LABORATORY

Wing Structural Design and Manufacturing (WiSDM)

Evaluate two approaches for wing desig/mfg

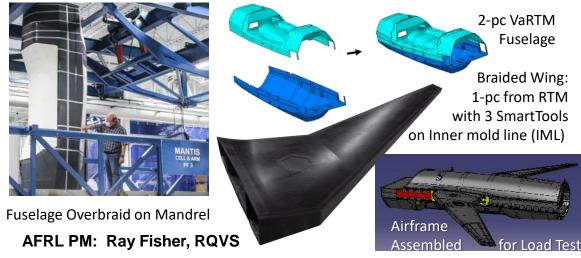

- Minimized capital equip, hand assembly (Aurora)
- Automate (AFP, AM, LFI & robotic assembly)
- Mfg wing structure, deliver cost & manhour data
- Static wing performance testing
 THE ALR FORCE RESEARCH LABORATORY

 Auto Inspired Long Fiber Infusion process to be matured by joint AFRL/Lockheed Martin program – aero focus


 Maturation of continuous carbon fiber AM tech for future complex shape fabrication

Braided / VARTM Inlet Duct Manufacturing Demonstration

Project Schedule



Contractors: CRG, SpinTech, A&P, Kratos

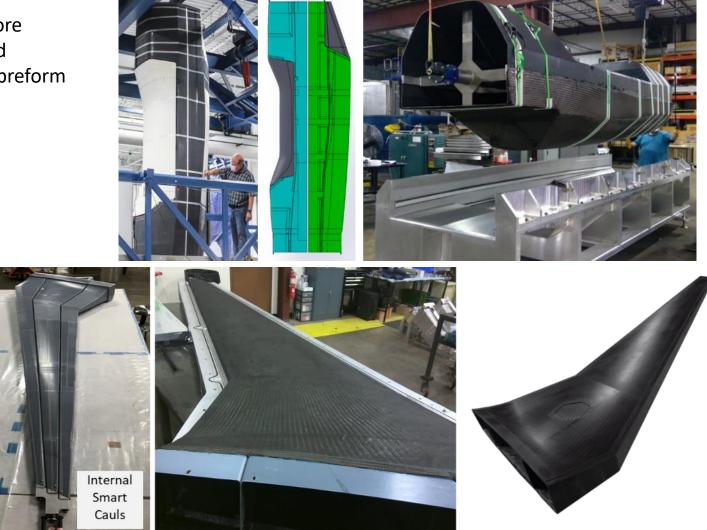
Description	Delivering		
Design and manufacturing demonstration using non-traditional aerospace composite processes	 Full scale braided inlet duct - DMAAPS program Cost and cycle time analysis 		
Technical Approach	Benefits to the Warfighter		
 Replace multi-piece metal tooling, hand layup and autoclave processes with: Shape Memory Polymer (SMP) mandrel Braided inlet duct preform Vacuum Assisted Resin Transfer Molding (VARTM) 	 67% reduction in man hours required 57% reduction in cost for 100th part Understanding of Smart tool durability Data for AFRL/FMC cost model mods 		

Design for Manufacture of Attritable Aircraft Primary Structure (DMAAPS)

Program Priorities

- Mature Braided Textile & Infusion Process to:
 - Minimize Cost Versus Pre-Preg Baseline
 - Speed manufacture & assembly hours
- Deliver Assembled Demonstration Airframe
- Static Test Airframe to Design Ultimate Load

Description	Delivering	
Application of automated overbraiding, SMP tools & VARTM techs for large fuselage and wing structures	Overbraided fuselage & wing structuresCost and cycle time data	
Technical Approach	Benefits to the Warfighter	
<u>Dry fiber with resin infusion</u> : no special storage - long shelf life. <u>Braiding</u> : enables rapid, semi-automated coverage of textiles to produce large area preforms. <u>Innovative tooling</u> : (wing) full IML/OML molding for large scale curing of unitized structures.	Enable manufacturing in the attritable design paradigm (low cost, rapid and scalable) to yield UAS assets which can be utilized with "attrition tolerance	


THE AIR FORCE RESEARCH LABORATORY

Design for Manufacture of Attritable Aircraft Primary Structure (DMAAPS)

Fuselage (I to r): braid mandrel w/ inserts before braiding, upper and lower preform split @ mid waterline for VaRTM (green and blue), upper preform going into VaRTM tool.

Wing (I to r): 3-pc internal SMP mandrel/tool, braided textile applied over mandrel/tool and loaded in lower RTM tool, demolded one-piece composite wing

Long Fiber Injection

Wing Rib Matched Metal Molds - WiSDM

	FY22	FY23	FY24	FY25
Characterization LFI Baseline				
LFI System Redesign				
LFI System Build and Integration				
Material Screening				
Material Characterization				
WiSDM Rib Part Demonstration				
Additional Relevant Parts Demonstration				

Krauss-Maffei's LFI Machine @ Romeo Rim

Description	Delivering		
Develop and demo an automated process for small - medium carbon composite part fabrication	 Modified KM fiber cut/mix head Multiple complex part demonstrations Quantified cost & cycle time benefits 		
Technological Approach	Benefits to the Warfighter		
 Partner with multiple AFRL & Industry entities Redesign cut/spray head for carbon fiber & new resins Integrate @ Krauss-Maffei and screen materials Characterize material properties Demo relevant parts: ribs, bulkheads, etc. 	 70+% Structures Cost Savings 80+% Cycle Time Reduction Consistent Part Quality Weight Neutral Minimize process skill labor needs 		

EV22

EV22

EV24

Technology for Agile Rapid Manufacturing of Aerospace Composite Structures (TARMACS) CII

Globe Gen II RapidClave

Sub-30 min cure of continuous fiber Class A components

C7 Corvette

	FY21	FY22	FY23
Est. Materials Requirements			
ID Relevant Aero Demo Parts			
Initial Mtls Process&Charact-Gen I			
RapidClave Gen III Design & Fab			
Common Tool Base Design-Gen III			
RapidClave Gen III Install & Valid,			
Relevant Parts Demonstrations			
Cost & Cycle Time Analysis			
Part Materials Characterization			
Advisory Committee Reviews			
	FY20	FY21	FY22

Contractors: Globe Machine Mfg, UDRI

	Description	Delivering		
 Leveraging commercial composites fabrication process for rapid, low cost curing of complex, aerospace composite geometries 		 Gen III RapidClave System w/ ML controls Multiple parts demos using quick cure resin(s) Assessments of novel tooling options 		
	Technological Approach	Benefits to the Warfighter		
• • • •	Establish Industry/Navy/Academic Advisory Committee Use RapidClave Gen I machine for initial mtl studies Design Gen III machine based on anticipated requirements Investigate multiple rapid cure resins Demo on relevant aerospace parts, characterize mtl prop. Gather cost/cycle time reduction data	 Vastly Reduced Composite Part Cycle Times 80%+ reduction in processing time 30%+ reduction in composite part costs Highly automated – minimized labor Quality neutral 		

How do I Get Involved?

- Share information with AFRL on your technology
 - Craig Neslen, AFRL/RXMS, <u>craig.neslen@us.af.mil</u>, 937-684-0939
 - Ray Fisher, AFRL/RQVS, <u>burton.fisher@us.af.mil</u>, 937-656-8834

• Be aware of AF SBIR topic calls

- \circ Issued 3 times a year
- www.afwerx.af.mil
- \circ www.afsbirsttr.us

• Reach out to USAF contractors/subcontractors

- Airframers, e.g., Lockheed Martin, Boeing, Northrop Grumman, Kratos, General Atomics
- \circ Tier 1 suppliers