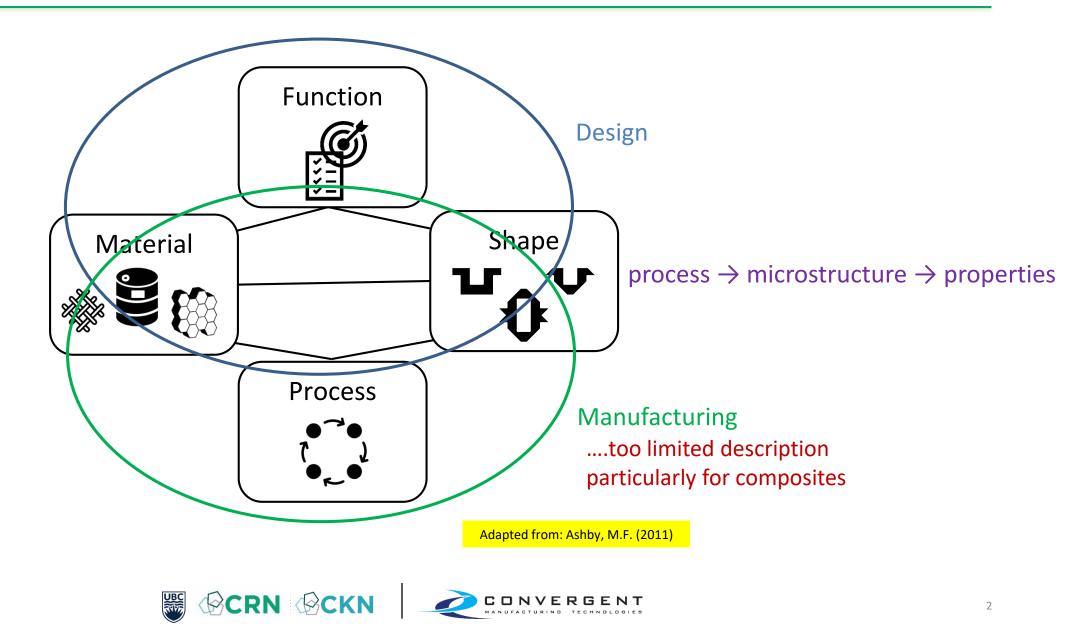
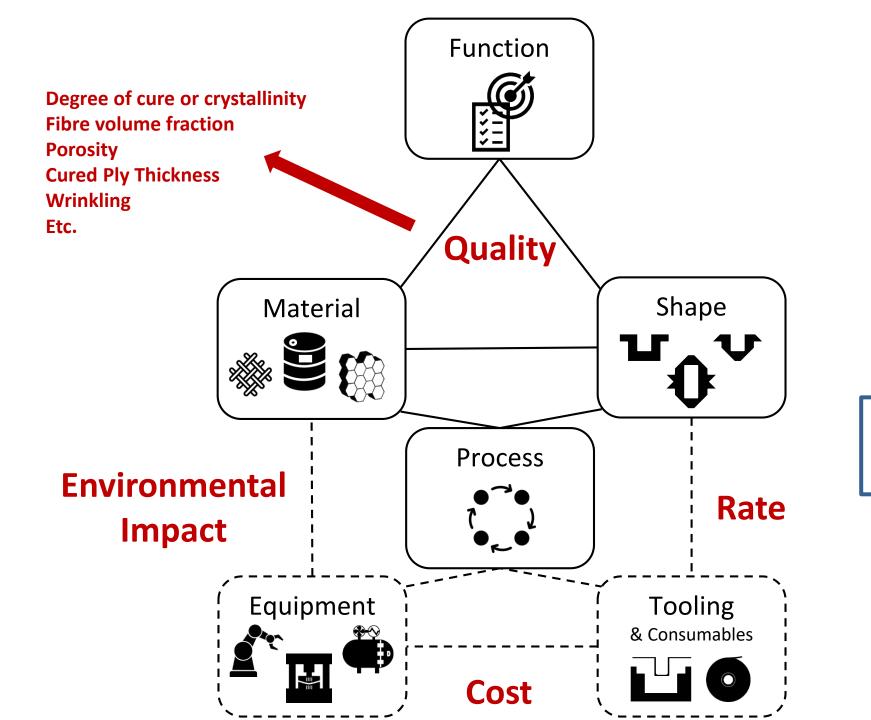
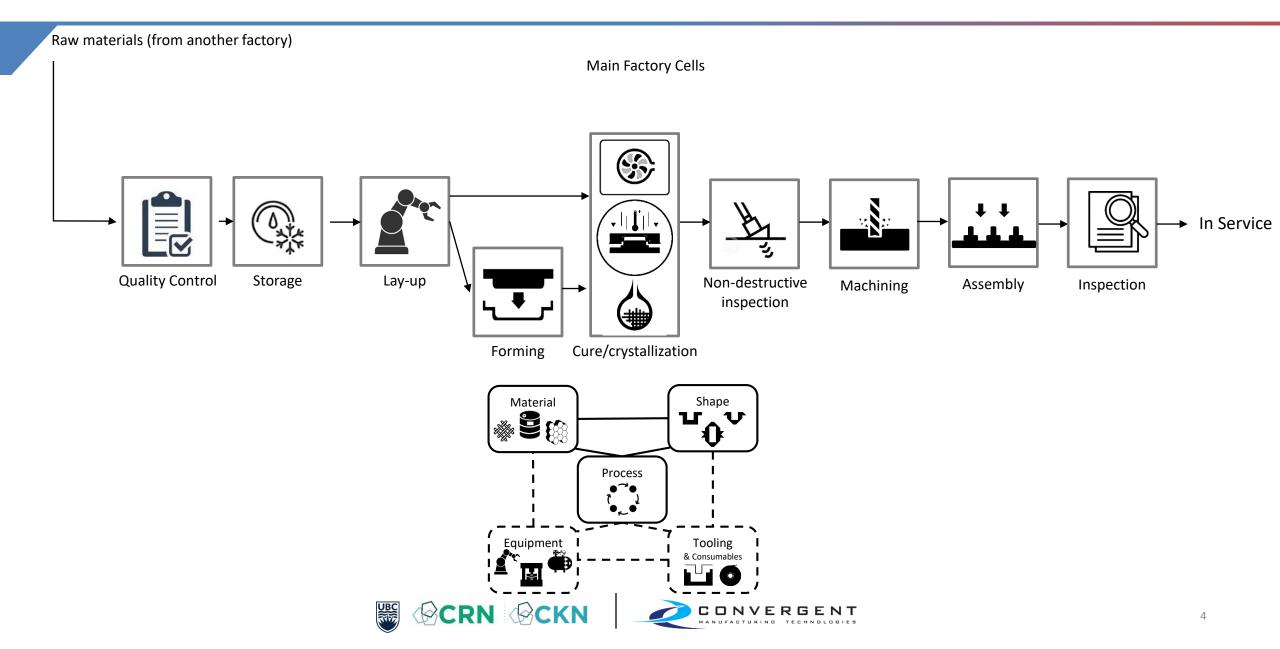
Reimagining Aerospace Composites Manufacturing in an Industry 4.0 World


Anoush Poursartip, PhD, PEng, FCAE, FSAMPE, FICCM


Professor of Materials Engineering & Director, Composites Research Network, The University of British Columbia Co-Director, Composites Knowledge Network Director of Research, Convergent Manufacturing Technologies

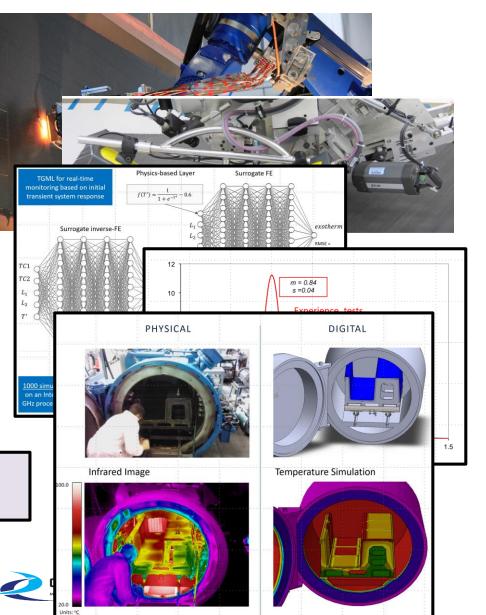
> Goran Fernlund, PhD, PEng Director of Engineering, Convergent Manufacturing Technologies Emeritus Professor, Materials Engineering, The University of British Columbia

Selecting Materials and Processes

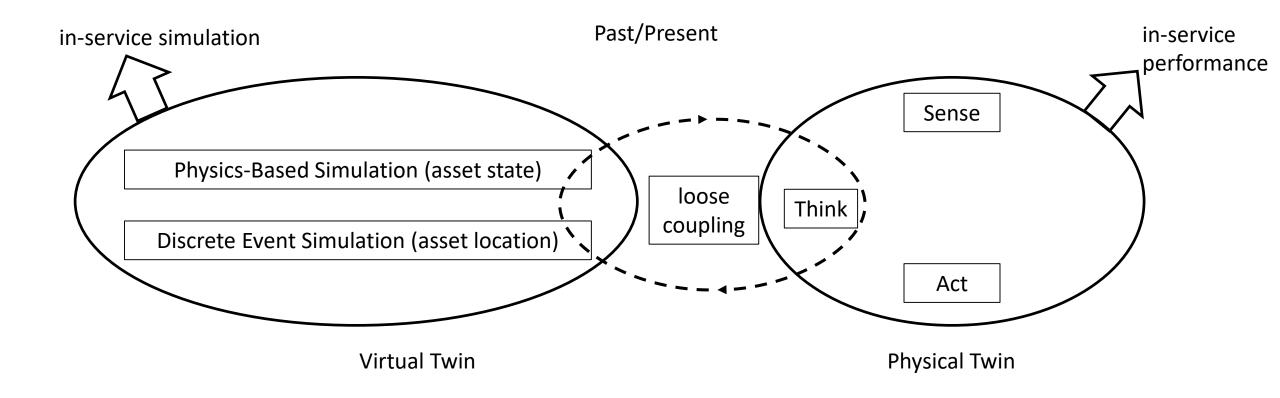


- Optimization
- Troubleshooting

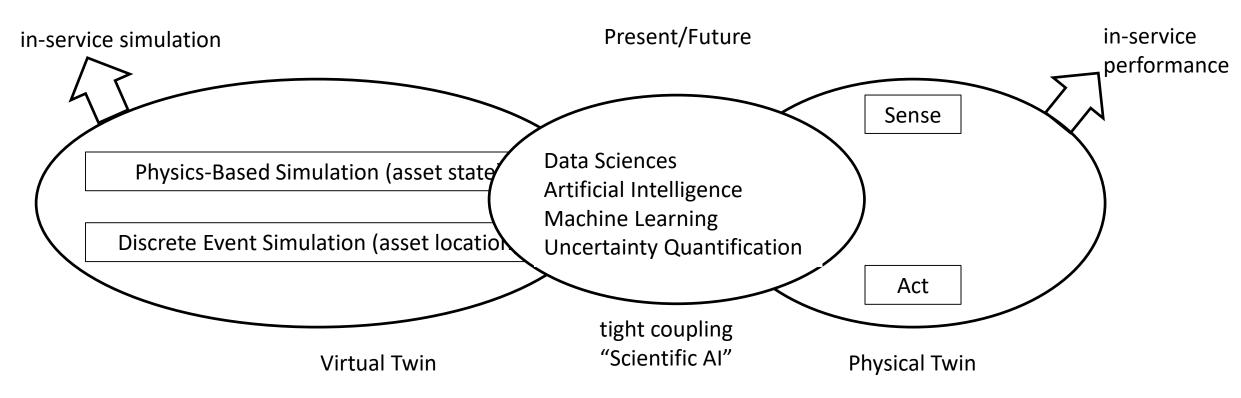
Composites Manufacturing is a Systems Problem


Succeeding with Industry 4.0

Industry 4.0 is described in many ways, but there are five core enabling technologies you must integrate


- Automation
- Sensing
- Data Sciences including Artificial Intelligence
- Uncertainty Quantification
- Scientific Process Simulation

Integration of these core technologies in a coherent manner is critical

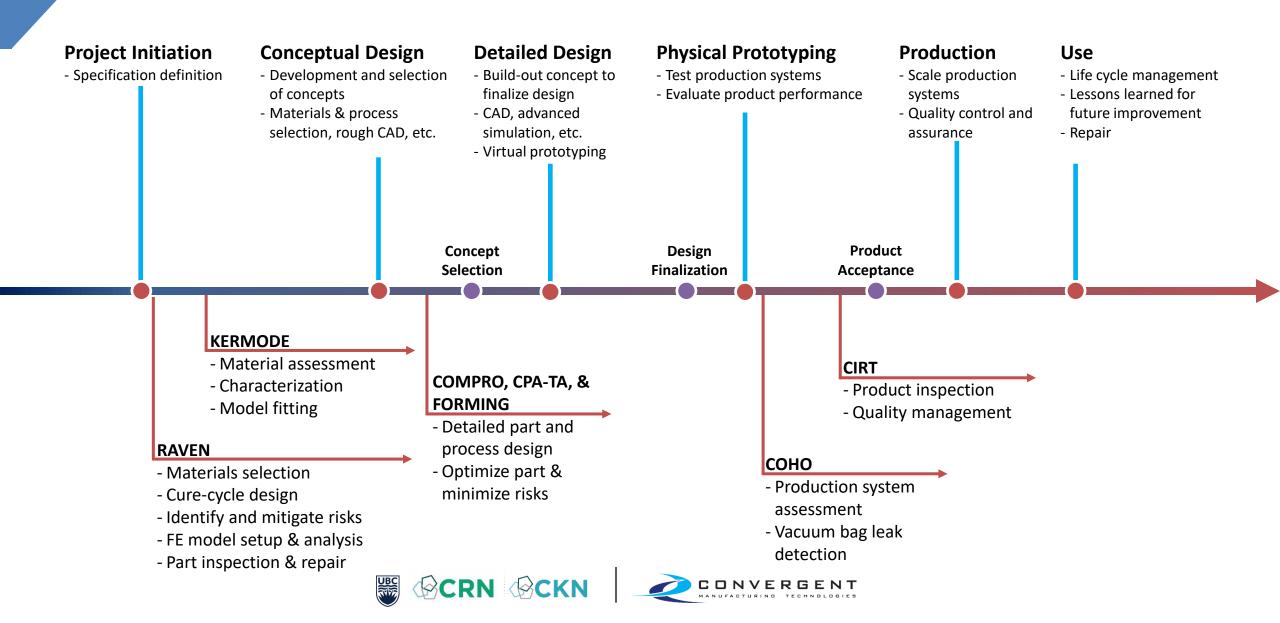


The Two Digital Twins: Virtual and Physical Manufacturing

The Two Digital Twins: Virtual and Physical Manufacturing

Virtual twin description must be

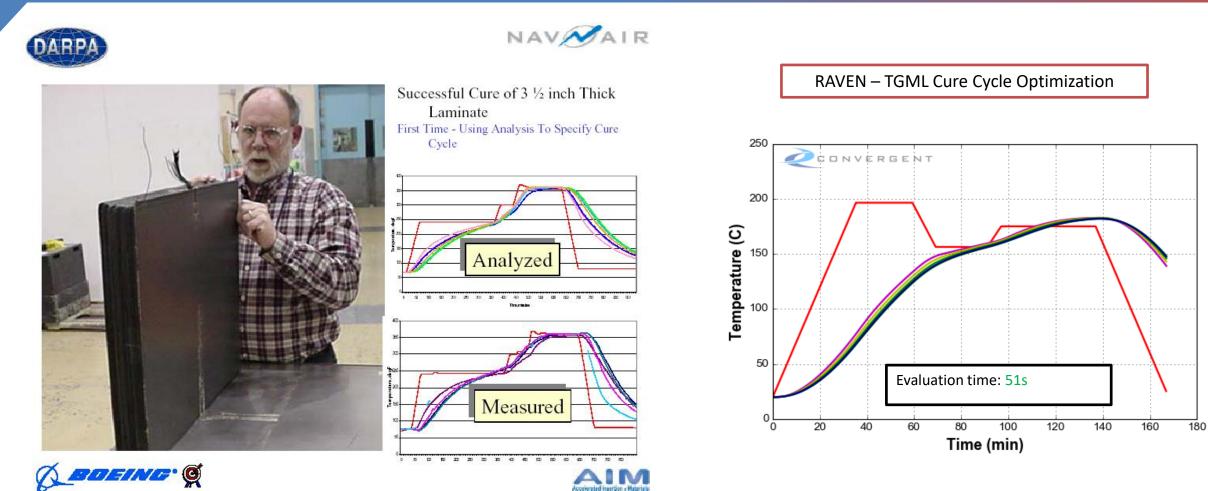
Integrated across the factory – consider all steps in the process, even if placeholders Consistent use of science-based state variable across all cells


Process Simulation for Thermal Management

of Material and Process Engineering, Seattle, WA, 2017

evaluation of the thermal response of tooling for composites manufacturing, Journal of Composite Materials, 53(10) 1277-1290.

Project Development with Convergent Tools


Virtual Material Data Sets for Processing

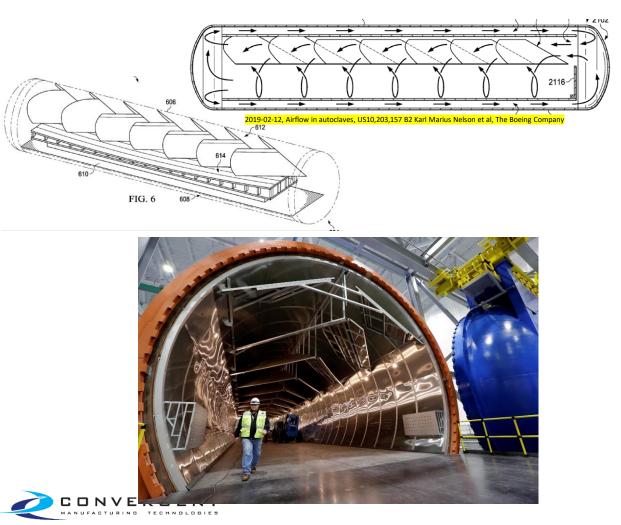
Increasingly available from a variety of sources – open, on demand, Distribution C, proprietary

Resin	Fibre	Man	ufacturer	Form		ermo-	Flow-Compaction			Stress-	Gas Transpo		Source				
Kesiii			ulacturer	1 Offin	Che	mical F	ibre Bed	l Viscos	sity	Deformation	and Porosit	ty					
Duratool 450			Solvay	Tooling		✓	×	×		\checkmark	×	DoD					
LTM12	CF0700		Solvay	Tooling		✓	×	×		✓	×	DoD					
RS54	E Glass	E Glass Torav		Toolina		✓ ×		×		√ Flow-Comp	×	DoD					
AR4550	Resin			Manufact	urer	Form		Thermo-	•			Stress-	Gas Tra				
ECK 0.125-							C	hemical	Fibr	re Bed	Viscosity	Deformation	and Po	rosity		-	
ECK 0.125-	Nomi	Nominal Breather		Generic		Other		\checkmark	✓ ×		\checkmark	\checkmark	✓ ×		Converge	ent	
Sync		Nominal Rubber		Generic		Other		\checkmark	× ×		\checkmark	\checkmark	×	:	Converge	ent	
	Nomine	Nomine ^{L Aluminium 606Y}		Gonorio		Tooling								Convorgent		ont	
	Non	No		Fibre	Manuf	facturer	Form		rmo-		Compaction		Stress- Gas			e	
	N¢							Chemical		Fibre Bed		,	ion and	Porosity			
	Nc—	MTM45-1		IM7		lvay	Preprec	j ~	/	×	✓	✓		×	TRUS		
	Non	MTM45-1		S		lvav	Resin	v		<u> </u>		Flow	Compaction		TRUS		
	HRH-10 3/16	5250-4		Resi	า	Fibr	re	Manufactu	urer	Form	Thermo- Chemical			cosity	Stress- Deformation	Gas Transpo and Porosity	
	HRH-10 3/16	5250-4 977-3		NATI A			004	100									
-	3/16-505200	977-3		MTM45		HTS5		ACG		Prepreg	✓ ✓	×		\checkmark	×	×	NCAMP/NIAR
+	3/16-505200	977-3		5215 5250-		T40		Solvay		Prepreg	✓ ✓	×		✓ ✓	×	×	NCAMP/NIAR
	HRP 3/16-4.0	977-3	E Gla	- 0200		T65 T70		Solvay Toray		Prepreg	✓ ✓	×		✓ ✓	× ×	×	NCAMP/NIAR NCAMP/NIAR
-	HRP 3/16-12.	977-3		8552		IM		Hexcel		Prepreg	✓ ✓	×		 ✓ 	× ×	×	NCAMP/NIAR NCAMP/NIAR
l	IRP 3/10-12.	977-3	IM7				/	Hexcel		Prepreg Resin	✓ ✓	*		▼ ✓	×	×	NCAMP/NIAR NCAMP/NIAR
		977-3	IM7			IM	7	Solvay		Prepreg	✓ ✓	- ×		• √	×	×	Solvay
		977-3	IM7 T			-		Solvay		Resin	✓ ✓	-		• •	×	×	Solvay
		5320-1		EP219				Solvay		Resin	 ✓	×		✓	×	×	Solvay
		5320-1		EP219		T65	0	Solvay		Prepreg	 ✓	×		, √	×	×	Solvay
		FM309-1		EP219		IMS		Solvay		Prepreg	· · · · · · · · · · · · · · · · · · ·	×		✓	×	×	Solvay
		M65		EP219		HTS		Solvay		Prepreg	 ✓	×		√ 	×	×	Solvay
		M65		FM309		-		Solvay		Film Adhesive	✓	-		 ✓ 	×	×	Solvay
		FM300	Pol	Y FM300		-		Solvay		-ilm Adhesive		-		✓	×	×	Solvay
		FM300-05	5i Pol			AS4	С	Toray		Prepreg	√	×		✓	×	×	Toray
		AF3024		TC25		AS4		Toray		Prepreg	✓	×		✓	×	×	Toray
				TC275		TR5	0S	Toray		Prepreg	✓	×		✓	×	×	Toray
				TC275	-1	HTS	40	Toray		Prepreg	✓	×		✓	×	×	Toray
				TC38	0	HM6	63	Toray		Prepreg	✓	×		✓	×	×	Toray
				TC38		IM	7	Toray		Prepreg	\checkmark	×		\checkmark	×	×	Toray
				TC38		-		Toray		Resin	✓	-		\checkmark	×	×	Toray
				TC38		-		Toray		Adhesive	\checkmark	-		✓	×	×	Toray
				TC1200 (F	PEEK)	AS	4	Toray		Prepreg	\checkmark	×		\checkmark	×	×	CRN / Convergent

Cure Cycle Optimization

Automated optimization by non-expert, < 1 minute 2022

Manual optimization by expert, ~ 8 hours DARPA AIM-C Program, 2004

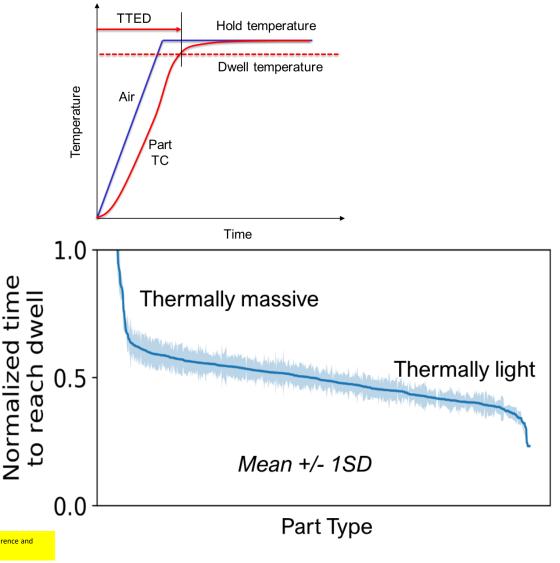


Standard Practice at Leading OEMs

 2000s - Boeing 787 fuselage cure cycle designed by Boeing-led team using Convergent COMPRO software

• 2010s – For 777X wing, Boeing also designed the autoclave using simulation

Example: Process Monitoring


- When multiple parts are cured together, autoclave loading is done based on experience.
- This creates unknown heat transfer coefficients which affects temperature histories of parts.
- We are using a combination of
 - Science-based Simulation
 - Theory Guided ML
 - Sensing/IOT
 - Historical Data Analysis

Science-Based Data Analytics: Production Factory

- Nine years of production data from one autoclave was analyzed
- Several hundred different parts
- 4,075 autoclave runs, each with multiple parts
- Total of 75,130 parts
- Over 200,000 thermocouple traces (2 or more per part)
- There is a clear relationship between an individual part and its mean time to reach the cure temperature.
- Method is sufficiently mature now that there is confidence in reducing thermocouple counts in future runs significantly

Stewart A, Fabris J, Terpstra C, Shead M, Fernlund G, Poursartip A, Thermal Analysis of Historical Autoclave Data using Science-Based Data Analytics Methods, SAMPE 2020 Conference Exhibition, Seattle, United States, May 2020

Example results for 2 cure recipes and 1 AC

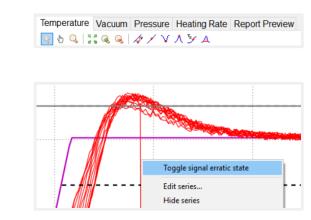
	Model probability > 95.0 %	Model probability > 99.0 %				
Test set size (# loads)	156	305				
Correct predictions	151	304				
% Correct predictions	96.8%	99.7%				
Dwell failures*	0	0				
Avg. parts /run	15	13				
Avg. parts to monitor /run	4	3				
Avg. % TC reduction /run	73.3%	76.9%				
Avg. parts w/o data/run	1	1				

- *Dwell failures occur when a part spends less than a fixed amount of time above the dwell temperature
- The time in dwell is controlled by the monitored TC with the largest TTED
- If the part with the largest TTED is not monitored, dwell failure may occur for this part

15

CIRT

Automated Specification Assessment


CIRT (Composite Inspection Reporting Tool) is used to inspect process data files, assess the data against predefined specification and generate reports detailing how well the part(s) met the requirements.

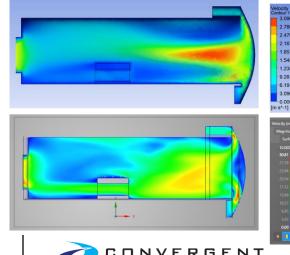
Applications:

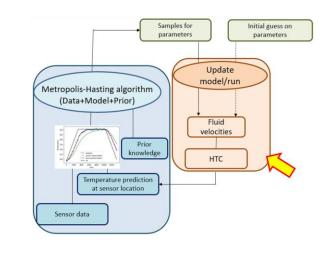
- Autoclaves
- Ovens
- Repair
- Presses
- Thermal Processes

Importance The prestave Vacuum Pressue Heating Rate Ingo The receiver Parts Importance Curke Adort C GDCR Importance Generate reports Importance Generate reports Importance Importance Importance Importan

Intuitive Interface

Feature Rich Tools





Virtual Thermal Profiling and Virtual Thermocouples

- The critical temperature is in the heart of a structure
- There is no direct sensor technology that can measure this
- Current proxy approaches are NOT rigorous
- We are developing rigorous methods, based on statistical inference, sciencebased ML surrogate models to give us accurate "virtual thermal profiling" and "virtual thermocouples"
- This means that permanent thermocouples strategically placed on tooling can be used
- This can be done at highly competitive cost and effort with higher reliability and confidence

Digital Education

The Knowledge in Practice Centre, an online resource for Empowering businesses with the composites knowledge they need to succeed

- Trusted and extensive source for composites manufacturing knowledge
- Organized and reviewed science-based content tied to industrial practice
- Multi-level open learning resource
- Webinars, case studies, and practical examples
- Continuously updated

Access at CompositesKN.org/KPC

- Composites manufacturing is a complex systems problem, and needs an integrated science-based simulation foundation for successful digitalization
- This is the key to enabling significant impact both on and off the factory floor
- This is particularly true for new materials, processes, products, factories, especially for the future where performance-based approaches can be used
- Our approach to manufacturing digitalization includes research (CRN), enabling technologies (Convergent), and education (CKN)

Acknowledgements

- The work presented here has been performed by a very large number of students, colleagues, and collaborators at UBC, CRN, Convergent, and partnering organizations
- In particular, it would not have been possible without the close collaboration of Professor Reza Vaziri
- The Composites Research Network and Composites Knowledge Network gratefully acknowledge the long-term support of the Canadian Government, The Boeing Company, Toray, and Convergent. Funding and support from many other sources, particularly the USAF, is also gratefully acknowledged

