PRECISION TOOLMAKING. SIMPLIFIED.

MANTLE'S GOAL

Accelerate how manufacturers go from product idea to launch

by **simplifying** how steel mold tool components are made

with a 3D printing solution that delivers unmatched accuracy, surface finish, and tool steel performance.

MANTLE:

GAME-CHANGING SPEED, COST, AND EFFICIENCY

PROVEN RESULTS:

Less time to produce precision tooling

Less cost to produce precision tooling

More efficient molding

Medical Device Component

Application

Low Volume Injection Mold Core and Cavity

Key Metrics

- Lead time reduction from weeks to days and work required from 148 hours to 51.5 hours
- 50% cost reduction
- Accurate within 0.001" as printed without additional finishing
- Molding performance of printed inserts was equivalent to conventionally manufactured inserts

HOW TOOLMAKING TIME WAS REDUCED

CONVENTIONAL TOOLMAKING PROCESS

Design

Raw Materials

CAM Program

Rough Milling

Wire EDM

Electrode Milling

Rough EDM

Semi Rough EDM

Finish EDM

Final Finishing

TOTAL TIME

148 HOURS

TOOLMAKING OPERATIONS WITH MANTLE

Design

Raw Materials

Printing Labor Hours

CAM Program

Rough Milling

Wire EDM

Electrode Milling

Rough EDM

Semi Rough EDM*

Finish EDM

Final Finishing*

TOTAL TIME

49.5 HOURS

* Reduced time

Torch Packaging Housing

Application

Injection Mold Component (Slide)

Key Metrics

- 75% lead time reduction
- 75% cost reduction
- Printed tool was used with no post processing to part detail

HOW TOOLMAKING TIME WAS REDUCED

CONVENTIONAL TOOLMAKING PROCESS

Quoting

Raw Materials

CAM Program

Rough Milling

Electrode Milling

Rough EDM

Semi Rough EDM

Finish EDM

Wire

Final Finishing

OUT OF HOUSE LEAD TIME 8 WEEKS

\$15,000

TOOLMAKING OPERATIONS WITH MANTLE

Quoting

Raw Materials

aw erials

CAM

Ro

Rough Milling

Electrode Milling

EDI

Rough EDM

Semi Rough EDM

Finish EDM

Wire

Final Finishing*

TOTAL TIME

2 WEEKS \$3,750

* Reduced time

Dental Guide

Application

Low Volume Injection Mold Core and Cavity

Key Metrics

- 40% lead time reduction
- Total operations time reduced from 200 hours to 110 hours
- EDM operation time reduced from 100 hours to 27 hours

HOW TOOLMAKING TIME WAS REDUCED

Conventional Toolmaking Operations

Quoting

Raw Materials

CAM Program

Rough Milling

Heat Treatment

Fixturing

Hard Milling Electrode Milling

Rough EDM

Semi Rough EDM

Finish EDM

Final Finishing

TOTAL TIME

200 HOURS

Toolmaking Operations with Mantle

CAM Program

Rough Milling

Heat Treatment

Fixturina

Hard Milling

Electrode Milling*

Rough EDM

Semi Rough EDM*

Finish EDM*

Final Finishing*

TOTAL TIME

110 HOURS

* Reduced time

Deodorant Stick Thumbwheel

Application

Production Injection Mold Core

Key Metrics

- Over 1.4 million cycles and counting with no signs of wear on the printed tool
- Printed inserts produced weeks faster than conventional machined inserts
- Mantle's metal 3D printed H13 and P2X inserts have proven to be as accurate and durable as traditionally S7 steel machined inserts

Medical Tweezer Core and Cavity

Application

Injection Mold Core and Cavity

Key Metrics

- From part design to molded parts within 3 weeks
- Successfully molded bio-based, recyclable
 65% glass-filled PA11 polymer
- Incorporated conformal cooling to control insert temperature precisely

Fluid Barb Fitting

Application

Injection Mold Core and Cavity

Key Metrics

- 50% lead time reduction
- \$1,200 cost savings

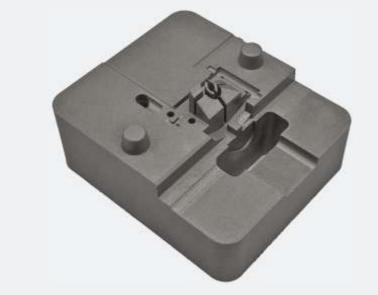
Medical Device Component

Application

Low Volume Injection Mold Core and Cavity

Key Metrics

- Lead time reduction from 12 weeks to 4 weeks
- Reduced tooling cost from \$63k to \$21k
- Accurate within 0.001" as printed without additional finishing


CAM lock latch


Application

Injection Mold Core and Cavity

Key Metrics

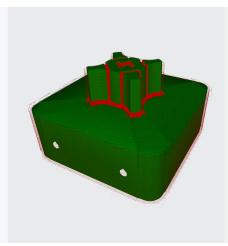
- 45% lead time reduction
- Tools required only 10 hours of final finishing and fitting
- Injected Nylon PA 6/6 35% glass filled

TRUESHAPE TECHNOLOGY

The accuracy of a CNC machine

The freedom of a 3D printer

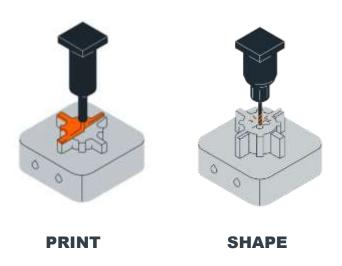
Designed and priced for every shop


TRUESHAPE TECHNOLOGY

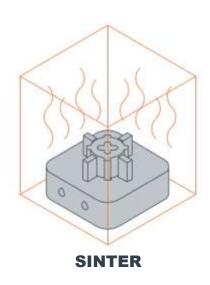
TOOL STEELS

SOFTWARE

HARDWARE


3D PRINTER

FURNACE

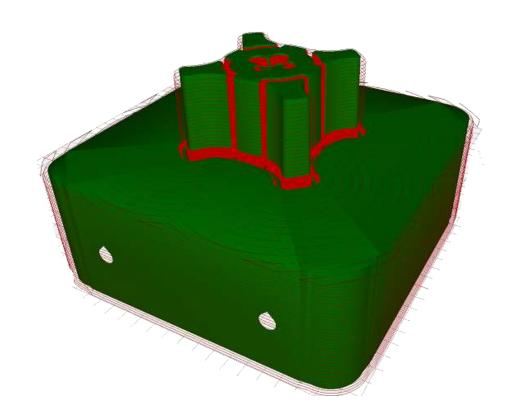

TRUESHAPE TECHNOLOGY

The solution includes:

HARDWARE SOFTWARE TOOL STEELS

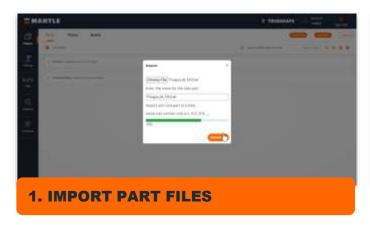
Print & shape metal paste in custom printer

Heat & sinter paste into a solid metal part in custom furnace

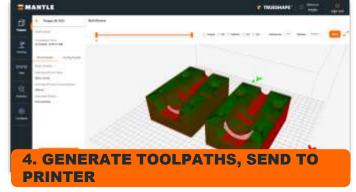

MANTLE SOFTWARE

Generate toolpaths in minutes (additive and subtractive)

No programming required


No CAM experience required

Train users in minutes


MANTLE SOFTWARE

4 easy steps

TWO MATERIALS OPTIMIZED FOR TOOLING

P2X: P20 Equivalent Tool Steel

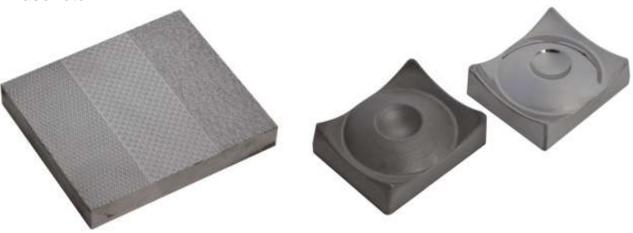
32 HRC

Compatible with standard tooling operations: grinding, milling, machining, welding, EDM Superior corrosion and abrasion resistance

H13 Tool Steel

HRC 42 As Sintered HRC > 50 after Heat Treatment

Compatible with standard tooling operations: grinding, milling, machining, welding, EDM


TEXTURE AND POLISH LIKE STANDAR D TOOL STEELS

TEXTURING

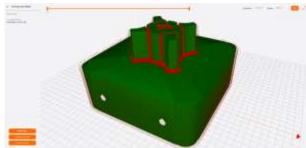
Chemical etch
Deep chemical etch
Laser etch

POLISHING

Achieved A2 finish

"This material took texturing just like P20 with the same settings. We could polish it to an A2 finish."


- Mold-Tech


SOFTWARE TO ELIMINATE MANUAL OPERATIONS

From CAD to part - digitally

Automatic additive and subtractive toolpath generation – no programming required

Remote print monitoring and analytics

TRADITIONA

CONFORMAL

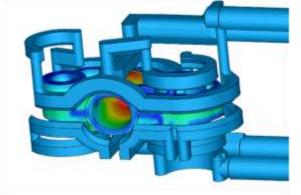
CONFORMAL COOLING

Without a time or cost penalty

REDUCE CYCLE TIME

- Faster cooling times
- Increase press capacity

LOWER PART COST


- More parts faster
- Reduce tool cavitation

INCREASE PART QUALITY

- More controlled shrinkage
- Reduce total part warpage
- Precisely address trouble areas with cooling
- Better shot-to-shot dimensional consistency

LET'S DO A PROJECT TOGETHER

WHERE MANTLE WINS:

Like all manufacturing processes, how well Mantle fits is application dependent. The following criteria help build an ideal application for Mantle.

- Complex tool designs that require multiple machining and EDM operations to build traditionally
- Molding of challenging plastics (high temp, filled, etc.)
- Quantity of molded parts needed is hundreds to millions
- Tool size < 4 x 4 x 2"
- The desire to learn processing parameters, so a steel tool is required

- The ability to use the printed inserts with a modular mold base
- Readily available finishing (grinding) and molding to take full advantage of Mantle lead time savings
- The ability to compare Mantle to a traditionally fabricated inserts using preexisting manufacturing data (lead times and costs) to help asses Mantle
- Optional: the desire to use conformal cooling