Metamorphic Manufacturing (a.k.a. Robotic Blacksmithing):
The Third Wave of Digital Manufacturing

Glenn Daehn
The Ohio State University

Alan Taub
LIFT CTO
University of Michigan
Digital Manufacturing: Hope & Hype

First Wave – CNC Removal
USAF Funding at (MIT) starting in 1949.

Second Wave – AM Additive
NSF, etc., early 1980’s
Metals: Primary Engineered Material

- Production → large fraction of energy use
- Application → huge in energy efficiency
 - Light vehicles, efficient engines, advanced construction

Resource Productivity
Dornfeld (2013, blog)
Tekkaya & Lange

M. F. Ashby, 2010
www.grantadesign.com/education/resources
Third Wave: Metamorphic
Proof: Plasticine and Metal

LIFT Prize – $25k offered for a single programmable system that can shape 2 of 3 target parts.

Team Honey Badger, of Ohio State University. Alex Koenig, Bhuvi Nirudhoddi and Brian Thurston
See: RoboticBlacksmithing.com for details.
Team Honey Badger: Detail

Team Honey Badger, of Ohio State University. Alex Koenig, Bhuvi Nirudhoddi and Brian Thurston. See: RoboticBlacksmithing.com for details.
Technical: How

Fundamentals

Plasticine is a hot metal surrogate.

Volume conserved

\[\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 0 \]

Can make complex shapes by:

→ Squeezing
&
→ Bending

Primary deformation trumps secondary deformation.

How would you make a cube from a piece of clay?

Controlled open die

Primary deformation trumps secondary deformation.

Rotate, shape, repeat...

- Squeeze
- Rotate
- Squeeze
- Rotate
- Squeeze
- Rotate

Final!

Increments

Very simple hydraulic cylinders can offer 40,000 ponds force; ~1” square interchangeable tools and multiple programmed strokes.

20-Ton C-Clamp, 40 kg
20-Ton cylinder, 15 kg
Technical: How

Many focused examples:
Incremental sheet
Incremental bar
Stretchers
Shrink
Flexible profile bending
Flexible ring rolling
Open die forging
Powered hammers
Etc...
Technical: What

Track with time:
- Temperature
- Strain tensor
- Stress tensor

Predict:
- Microstructure
- Damage
- Anisotropy
- Etc…

German anonymous, circa 1606
Technical: Why -- Carbon Footprint

Shape by deformation more efficient than:
- Machining
- Casting
- Powder Metallurgy
- Additive

Also
- Range of materials
- Established Tech.
- No HIPping

Energy to:
- Vaporize
- Melt
- Deform

<table>
<thead>
<tr>
<th>Electricity Usage (J/g)</th>
<th>Process Rate (kg/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1TJ/g</td>
<td>1 mg/hr</td>
</tr>
<tr>
<td>1GJ/g</td>
<td>1 g/hr</td>
</tr>
<tr>
<td>1MJ/g</td>
<td>1 kg/hr</td>
</tr>
<tr>
<td>1kJ/g</td>
<td>1000 kg/hr</td>
</tr>
<tr>
<td></td>
<td>10^6 kg/hr</td>
</tr>
</tbody>
</table>

Metamorphic!
Technical: Better, Cheaper, Assured

Wrought metals generally have the best properties.

Weld metal lay-ups could provide initially graded compositions.

Metal forming is relatively inexpensive. Dies account for most of the cost and lead time.

Power of the forming system largely sets forming time.

Sensing and big data assure each part is within specification.
Policy: *Synthesis, not just Analysis*

Lots to be done to launch a new industry. Public investment needed.

Scientific basis is **not** the key; its synthesizing building, developing standards and communities.

Need to engage our workforce and community colleges.

Demonstrate room for creativity and innovation in manufacturing.

Need to stay in front of Fraunhofer-like collaborations.

Fund translational research centers (See MForesight talk, Thursday).

Fund openly available specialized facilities for training, innovation trials and research.

Don’t get locked out of IP.

Press Function: Multi-purpose double action forming

Capabilities:
- Local temperature control
- Double action forming 300x230Ton
- FB35”xSS35”x 24” Daylight
Summary: *We Need Metamorphic Mfg!*

Subtract → Add → Morph. (shape and properties)

Based on fast advancing disciplines
- Robotics
- Integrated Computational Materials Engineering
- Artificial Intelligence
- Sensors
- Control

Can scale naturally to large sizes

Provides exceptional materials properties; extendable to graded chemistry

Naturally provides a path for qualification and certification

Is an opportunity for the USA. Helps balance of trade. Cement this here by:
- Fast innovation
- Skilled workforce (motivated by creative opportunity)
- Unique and accessible equipment
Further Information

LIFT Agile and Low Cost Processing Pillar Docs: https://lift.technology/pillar/novel-agile-processing/

Key elements of this technology:

Open die forging: https://en.wikipedia.org/wiki/Forging

3-D optical dimensional measurement: https://en.wikipedia.org/wiki/3D_scanner

Thermo-mechanical processing: (huge topic), maybe start at: https://www.doitpoms.ac.uk, here’s a book: http://www.sciencedirect.com/science/bookseries/14701804/11

Daehn and Taub *Manufacturing Letters* Publication: https://doi.org/10.1016/j.mfglet.2018.02.014
Robots -- Way better than humans

Stronger.

Better sensors.

Faster decisions.

Can Learn!

Can record everything.

No attitude.

Other examples:
Making pizza
laying bricks
Robo-dogs
Robo-Soldiers

Example: Japanese Robot Sumo
Movie from: https://www.youtube.com/watch?v=QCqxOzKNFks
See rules at: http://robogames.net/rules/all-sumo.php