THE INTERNET OF SKILLS:
ONLINE VIRTUAL SIMULATORS FOR SKILLED TRADES

National Science Foundation
David Dornfeld Manufacturing Vision And Award
Blue Sky Competition
University of Southern California, June 6, 2017

Mark P. Mills
Faculty Fellow, McCormick School of Engineering, Northwestern University
Co-Director, Northwestern Initiative For Manufacturing Science & Innovation
Senior Fellow, Manhattan Institute

www.tech-pundit.com
Future of Manufacturing: More

Global GDP Growth: Next two decades 2x the past 20 years

- More demand → more manufactured products
- More complexity per product
- Manufacturers are under-invested in automation

Manufacturing Contribution to GDP

Top 12 U.S. Economic Sectors
Manufacturing Employment: More Demand for Skills

• Skilled trades shortage #1 issue past 7 years
• 88% manufacturers report trouble finding skilled workers
• 500k vocational jobs unfilled 2016 & will get worse
 • Silver Tsunami: employees in skilled trades older than average
• Workforce training #1 impediment to automation (2016 MAPI survey)
Future of Training: Virtual Skills Simulator

Can’t close skills gap with incentives, K-12 voc-tech, etc. ➔ Breakthrough needed

Skills Training Revolution 1.0
• 1927, Edwin Link, first Flight Simulator
• Enormous progress underlying electromechanical, display, computing systems

Skills Training Revolution 2.0
• 2027 (?) name TBD, first Virtual Skills Simulator achieves True Virtual Reality
• Revolutionary for healthcare, gaming ... everything ... Interactive Internet

1927 Edwin Link Flight Simulator

2027 Virtual Skills Simulator

Interactive Internet
Virtual Skills Simulator: Enabling Technologies

Sensors
• Sight, sound, touch (smell, taste)

Networks
• Cyber-physical & Haptic latency ~ 1-10ms → 100-1000km

Software
• Exascale at the center & HPC at the edge

Neuropsychology & neurophysiology
• Active MRI + exascale → Perception of reality

Actuators
• Immersive reality emulation → conformal human-friendly
Virtual Skills Simulator: The Hard Problems

Sensors & Actuators for cyber-physical systems

Sensors: Detect & transmit reality
- Force, location, roughness, softness/hardness, warm/cold, friction
- Accuracy, resolution, speed and no power
- Solutions: Moore’s Law + new conformal bio-compatible materials

Actuators & Haptics: Transition from cyber to physical world
- Creating force – physical realism – move atoms not bytes
- *No Moore’s Law*
Actuators: Gatekeeper Tech for Cyber-Physical Systems

Requirements
• Sensitivity, speed, linearity, repeatability, stability, strength, compliance, etc. etc.
• Force, displacement, scaling, efficiency

Options
• Mechanical (ultrasonic, MEMS), thermal, chemical, optical, shape memory alloy (SMA), electro phenomena (piezo, motors), electro reactive polymers
Actuators: Tyranny of Power in Cyber-Physical Systems

Challenges at small & human scales
- Deliver enough power, efficiently
 - (Most data ignores energy source & power electronics overhead)
- Conformal & impedance matched

@ Ant-size
- Actuator ~ 100 mW vs insect < 100 μW \rightarrow 1,000 x less efficient
- Engine (10 mm) $< 1\mu$W \rightarrow 100,000 x less efficient
Muscles: Magic of Biological Actuators

Muscles conquer the blend of key metrics:
• Strain, stress, deformation, displacement, power
• Conformal, coupling efficiency
• Power efficiency (>50% v ~5%)

Material revolution needed to mimic nature

Promising progress but miles from Nirvana
• Beijing Institute of Physics carbon nanotube bimorph EAP (200 W/kg)
• UCLA elastomer sandwich
• Harvard self-healing stretchy electopolymer
• LBNL vanadium dioxide torsional muscle/motor (40 kW/kg)
• UT fishing-line coil w 50% displacement (5 kW/kg)
• LSU bio-inspired shape-memory polymer

300 W/kg (10x cockroach)
Enabling Virtual Simulators – Biomimetic Muscle Actuator

Time to follow Feynman’s “Room at the Bottom” ➔ but for atoms, not bytes

Need actuation tech equivalent to the vacuum-tube-to-transistor for information

New science & transformational tools unlock that possibility:
- Computational materials & materials genome (Exascale coming)
- Molecular machines -- 2016 Nobel Prize in chemistry
- Analytical instruments see molecular processes in real-time
 - Cryo-electron microscopy & super-resolved fluorescence microscopy
 - 3D printing biomaterials @ microscale

KEY GOAL EQUIVALENT TO LSI: Biomimetic Muscle Actuator (BMA)
- Enormous potential beyond Internet of Skills
- Age of Responsive Media, Interactive Internet, Tactile Internet
When BMAs Scale Like LSI

Cyber-physical equivalent of mainframe → PC?
• Conformal bio-compatible force-sense force-delivering glove

Cyber-physical equivalent of mainframe → smartphone?
• Multi-layer molecular-dimensioned smart-powered exoskin
• @ bio-efficiency delivering kW-class power w kg of fuel
Time for a Grand Challenge: Jaynes Prize for Biomimetic Muscle Actuator

• “We are speculating about the possibility of advancing the technology of energy convertors by taking hints from how Nature has managed it in biology.”

• “Having seen this [muscle] biological system...It is easy to believe that ... macromolecules could be ‘designed’ to do similar things, perhaps more easily.”

• “In time the design of useful anti-Carnot molecular engines (artificial muscles) might become as systematic and well understood as the design of dyes, drugs, and antibiotics is now.”