FUNDAMENTAL MANUFACTURING PROCESSES

Threading

SCENE 1.

FMP01A, CGS: FBI warning

text centered on black to transparent

gradient

FMP BKG, motion background

SCENE 2.

continue motion background

FMP02A, CGS: DRL screen

text centered on black to transparent

gradient

SCENE 3.

continue motion background

FMP03A, CGS: disclaimer

white text, centered on background

SCENE 4.

FMP SME, SME logo open, with music

SCENE 5.

 $\textbf{FMP05A,} \ \text{FMP open, with music}$

TH05B, edited peter carey narration

SCENE 6. continue FMP open

TH06A, CGS: Threading

WARNING

Federal law provides severe civil and criminal penalties for the unauthorized

reproduction, distribution or exhibition

of copyrighted media.

Copyright © 2010

Society of Manufacturing Engineers

For information on obtaining a

digital rights license for this

and many other SME video programs,

please contact:

training@sme.org

for details.

Always read the operating manual and $% \left(1\right) =\left(1\right) \left(1\right)$

safety information provided by the

manufacturer before operating any

manufacturing equipment.

Make sure all machine guards are in place, and follow all safety procedures

when working with or near manufacturing

equipment.

MUSIC UP AND UNDER

NARRATION (VO):

THE FUNDAMENTAL MANUFACTURING PROCESSES

VIDEO SERIES, EXAMINING THE TOOLS AND

TECHNIQUES OF PRECISION MANUFACTURING.

NARRATION (VO):

white text, centered on background FMP06B, blue background FMP06C, sound slug

SCENE 7.

TH07A, SME2578, 03:12:27:00-03:12:37:00 screw thread

TH07B, SME4389, 21:05:04:00-21:05:16:00 zoom out, lead screw turning

TH07C, SME3330, 08:04:48:00-08:05:58:00 screws used in assembly operation

TH07D, SME3928, 23:04:09:00-23:04:27:00 mechanical fasteners tightening composite assembly together, alternate shot

SCENE 8.

TH08A, SME2575, 01:15:22:00-01:15:30:00 pile of fasteners

TH08B, SME2520, 04:01:28:00-04:01:44:00 zoom out, watch works

TH08C, SME4385, 16:24:20:00-16:24:35:00 zoom out, mackinac bridge

TH08D, SME4385, 16:14:22:00-16:14:36:00 zoom out, mackinac bridge, alternate shot

SCENE 9.

TH09A, zoom in, still of external threads
TH09B, zoom out, still of internal threads

TH09C, ANI: bolt edge

TH09D, ANI: bolt edge, crest lines

TH09E, ANI: bolt edge, groove lines too

TH09F, CGS: Outer Crest

TH09G, CGS: Inner Groove

TH09H, ANI: nut edge

TH09I, ANI: nut edge, crest lines

TH09J, ANI: nut edge, groove lines too

TH09K, CGS: Inner Crest

TH09L, CGS: Outer Groove

TH09M, alternate, still, external threads

SCENE 10.

TH10A, SME3331, 12:20:40:00-12:20:55:00 tightening threaded fasteners manually and

THIS PROGRAM EXPLORES THE BASICS OF THREADING.

NARRATION (VO):

THE HELICAL THREAD OR SCREW FORM, AS USED IN MANUFACTURING, HAS TWO PRIMARY FUNCTIONS:

TO TRANSMIT POWER AND MOTION, AS WITH A LEAD SCREW THAT MOVES A MACHINE TABLE.

AND TO ATTACH AND SECURE PARTS TOGETHER,

AS IN THREADED FASTENERS SUCH AS NUTS,

SCREWS, AND BOLTS.

NARRATION (VO):

MOST THREAD-MAKING IS PERFORMED BY

FASTENER MANUFACTURERS. THESE FASTENERS

CAN RANGE IN SIZE FROM TINY WRISTWATCH

SCREWS, TO IMMENSE NUTS AND BOLTS THAT

SUPPORT BRIDGES.

NARRATION (VO):

THE TWO FUNDAMENTAL TYPES OF THREADS ARE

THE EXTERNAL THREAD...,
AND THE INTERNAL THREAD.

THE EXTERNAL THREAD FORM HAS OUTER

CRESTS AND INNER GROOVES TO MATCH AN

INTERNAL THREAD'S INNER CREST AND OUTER

NARRATION (VO):

GROOVES.

with wrench

TH10B, SME3423, 17:15:40:00-17:15:52:00 bolts being tightened, alternate shot TH10C, SME3423, 17:14:03:00-17:14:11:00 c.u. bolt being tightened, alternate shot TH10D, SME4390, 23:04:27:00-23:04:39:00 zoom out, gas line hookup TH10E, SME4413, 07:01:18:00-07:01:30:00 zoom out, gas line hookup

SCENE 11.

Thread Pitch Diameter

SCENE 12.

TH12A, CGS: Major Diameter

TH12B, ANI: bolt

TH12C, ANI: bolt, major diameter lines

TH12D, ANI: bolt, arrow and lines

TH12E, ANI: nut

TH12F, ANI: nut, major diameter lines

TH12G, ANI: nut, arrow and lines

SCENE 13.

TH13A, CGS: Minimum/Minor Diameter

TH13B, ANI: bolt

TH13C, ANI: bolt, minor diameter lines

TH13D, ANI: bolt, arrow and lines

TH13E, ANI: nut

TH13F, ANI: nut, minor diameter lines

TH13G, ANI: nut, arrow and lines

SCENE 14.

TH14A, CGS: Thread Pitch TH14B, ANI: bolt edge

MOST THREADS ARE RIGHT-HANDED, AND

ADVANCE WHEN ROTATED CLOCKWISE. LEFT
HANDED THREADS ARE ALSO MANUFACTURED FOR

SPECIFIC APPLICATIONS, SUCH AS GAS-LINE

CONNECTIONS.

NARRATION (VO):

BOTH STANDARD AND METRIC THREADS ARE

DEFINED BY SEVERAL DIMENSIONS. THOSE

DIMENSIONS INCLUDE:

THE THREAD'S MAJOR DIAMETER...,

THE THREAD'S MINIMUM DIAMETER...,

THE THREAD PITCH...,

AND THE THREAD PITCH DIAMETER.

NARRATION (VO):

THE THREAD'S MAJOR DIAMETER IS THE

OUTSIDE CREST DIAMETER ON AN EXTERNAL

THREAD...,

OR THE BASE OR ROOT DIAMETER ON AN

INTERNAL THREAD.

NARRATION (VO):

THE THREAD'S MINIMUM OR MINOR DIAMETER,

IS THE SCREW DIAMETER AT THE BASE OF THE

THREAD FOR AN EXTERNAL THREAD...,

AND THE THREAD CREST DIAMETER ON AN

INTERNAL THREAD.

NARRATION (VO):

TH14C, ANI: bolt edge, thread pitch lines

TH14D, ANI: bolt edge, arrow and lines

TH14E, ANI: bolt

TH14F, ANI: bolt, thread pitch lines
TH14G, ANI: bolt, arrow and lines

TH14H, ANI: bolt, arrow, lines, text

SCENE 15.

TH15A, CGS: Thread Pitch Diameter

TH15B, ANI: nut edge

TH15C, ANI: nut edge with pitch diameter

TH15D, ANI: bolt/nut

TH15E, ANI: bolt/nut with pitch diameter

SCENE 16.

TH16A, CGS: Percent of Thread

TH16B, ANI: 70% & 100% screw threads

TH16C, ANI: c.u. 100% thread TH16D, ANI: c.u. 70% thread

SCENE 17.

TH17A, ANI: bolt edge

TH17B, ANI: bolt edge, thread angle

TH17C, ANI: bolt edge, thread angle/arrow

TH17D, ANI: thread angle/arrow/60° text

TH17E, SME4389, 21:02:19:00-21:02:29:00

lead screw moving table

TH17F, SME4389, 21:01:48:00-21:02:01:00

zoom out leadscrew, square configuration

THE THREAD'S PITCH IS THE DISTANCE

BETWEEN TWO ADJACENT THREAD CRESTS.

THREADS PER INCH IS THE NUMBER OF

ADJACENT THREAD CRESTS IN ONE INCH.

NARRATION (VO):

THE THREAD PITCH DIAMETER IS AN

IMAGINARY DIAMETER THROUGH THE THREADS

WHERE THE WIDTH OF THE GROOVE AND THREAD

ARE EQUAL. BECAUSE IT IS THE DIMENSION

FROM WHICH ALL OTHER THREAD MEASUREMENTS

ARE MADE, THE THREAD PITCH DIAMETER IS

THE MOST IMPORTANT DIMENSION ON A SCREW

THREAD.

NARRATION (VO):

ANOTHER THREAD FEATURE IS THE PERCENT OF THREAD, OR THE ACTUAL MINIMUM DIAMETER OF THE THREAD. FOR EXAMPLE, A THREAD CUT TO FULL DEPTH IS A 100% THREAD. MOST THREADS ARE CUT TO LESS THAN 100% TO RETAIN STRENGTH, AVOID CRACKING, AND SIMPLIFY THE CUTTING OPERATION.

NARRATION (VO):

THE MOST WIDELY USED FASTENER THREAD

ANGLE IS 60 DEGREES. BUT THERE ARE MANY

THREAD CONFIGURATIONS TO FILL VARIOUS

DESIGN NEEDS. ONE EXAMPLE WOULD BE

THREADS USED FOR POWER TRANSMISSION.

THESE THREADS ARE CLOSER TO A SQUARE CONFIGURATION, ALLOWING THE THREAD TO TRANSMIT GREATER THRUST.

SCENE 18.

TH18A, CGS: Screw Lead

TH18B, SME2633, 01:09:09:00-01:09:25:00

c.u. fastener being driven

NARRATION (VO):

THE SCREW LEAD IS THE DISTANCE A

FASTENER TRAVELS IN ONE REVOLUTION AND

VARIES WITH THE FASTENER'S USE. MOST

FASTENERS ARE SINGLE-LEAD, MEANING ONE

FASTENER REVOLUTION ADVANCES THE

FASTENER ONE THREAD PITCH.

SCENE 19.

SCENE DELETED

SCENE 20.

TH20A, SME2575, 01:18:23:00-01:18:42:00

tilt, fasteners piling up in bins

TH20B, ANI: split screen, coarse & fine

thread shape

TH20C, CGS: Coarse

TH20D, CGS: Fine

SCENE 21.

TH21A, SME2633, 02:05:35:00-02:05:54:00

pan, fine thread shape

TH21B, SME3928, 23:19:37:00-23:20:04:00 assemble using fine threaded bolts

TH21C, SME3331, 12:06:19:00-12:06:29:00

assemble using fine threaded bolts

SCENE 22.

TH22A, SME2633, 02:06:08:00-02:06:19:00

pan, coarse thread shape

TH22B, SME3330, 08:06:50:00-08:07:15:00

cone-point screws being used in assembly
operation

NARRATION (VO):

THE SHAPE OF A THREAD IS DEFINED BY TYPE

AND END USE. THE TWO BROADEST THREAD

SHAPE DESIGNATIONS ARE COARSE AND FINE.

NARRATION (VO):

FINE-THREAD FASTENERS HAVE MORE THREADS

PER UNIT LENGTH THAN COARSE THREADS, AND

GENERALLY HAVE MORE HOLDING POWER. FINE-

THREAD FASTENERS ARE ALSO MORE RESISTANT

TO VIBRATION.

NARRATION (VO):

COARSE-THREAD FASTENERS RESIST THREAD

STRIPPING, AND CAN BE MADE FASTER AND

CHEAPER. MOST AUTOMATIC ASSEMBLY USES

COARSE FASTENERS.

SCENE 23.

TH23A, SME4390, 22:28:12:00-22:28:49:00

various gaging of threaded fastener

TH23B, CGS: Thread Tolerance

is Allowed to Vary

TH23C, CGS: Thread Allowance

The Amount of Play Allowed Between External & Internal

Threads

TH23D, SME2575, 01:12:23:00-01:12:49:00

tilt, fasteners piling up in bins,

alternate shot

NARRATION (VO):

THREADED FASTENERS ALSO HAVE

The Amount a Thread Dimension SPECIFICATIONS FOR TOLERANCES, WHICH

INDICATE THE AMOUNT A THREAD DIMENSION

IS ALLOWED TO VARY...,

AND ALLOWANCES, WHICH IS THE AMOUNT OF

SPACE OR PLAY ALLOWED BETWEEN THE

EXTERNAL AND INTERNAL THREADS.

--- FADE TO BLACK ---

SCENE 24.

TH24A, CGS: External Threads

white text, centered on background

FMP BKG, motion background

SCENE 25.

TH25A, SME4384, 15:40:11:00-15:40:28:00

c. u. external thread being produced

TH25B, CGS: Hand Threading

Turning Chasing Milling

Grinding Rolling

TH25C, ANI: cut thread, rolled thread

TH25D, CGS: Cut TH25E, CGS: Rolled TH25F, CGS: Formed

NARRATION (VO):

EXTERNAL THREADS ARE MADE IN SEVERAL

WAYS:

BY HAND THREADING,

TURNING,

CHASING,

MILLING,

GRINDING,

AND ROLLING.

IN ALL OF THESE PROCESSES EXCEPT

ROLLING, THE THREAD IS CUT INTO THE

METAL. WITH ROLLING, THE METAL IS FORMED

INTO A THREAD SHAPE.

--- TOUCH BLACK ---

HAND THREADING USES DIES THAT ARE FIT

SCENE 26.

TH26A, CGS: Hand Threading

TH26B, SME4389, 21:08:40:00-21:08:56:00 threading die fitted into holding collet TH26C, SME4389, 21:12:12:00-21:12:18:00 die positioned over hole, manually turned TH26D, SME4389, 21:12:38:00-21:13:35:00 c.u. die carving thread

SCENE 27.

TH27A, SME4389, 21:05:36:00-21:05:44:00 solid die

TH27B, **SME4389**, **21**:06:24:00-21:06:31:00 adjustable die

TH27C, SME4389, 21:08:20:00-21:08:32:00 adjustable die being adjusted

WORKPIECE AS IT TURNS.

NARRATION (VO):

NARRATION (VO):

INTO A HOLDING COLLET...,

AND THEN MANUALLY TURNED.

POSITIONED OVER A WORKPIECE...,

THE DIE CARVES A THREAD INTO THE

DIES CAN BE SOLID, TO CUT SPECIFIC

DIAMETERS...,

OR ADJUSTABLE, SET TO VARIOUS DIAMETERS

WITH A SCREW.

--- TOUCH BLACK ---

SCENE 28.

TH28A, CGS: Thread Turning

TH28B, SME4391, 23:43:11:00-23:44:08:00

c.u. thread turning

NARRATION (VO):

IN THREAD TURNING, A CUTTING TOOL MOVES

ALONG THE AXIS OF A ROTATING WORKPIECE,

CUTTING A HELIX. SEVERAL PASSES ON THE

LATHE ARE REQUIRED TO COMPLETE THE

THREAD. BY CHANGING ROTATION SPEED AND

LONGITUDINAL FEED, A WIDE VARIETY OF

THREAD SIZES, SHAPES, AND PITCH CAN BE

CREATED. THREAD SHAPE IS DETERMINED BY

TOOL SHAPE.

SCENE 29.

TH29A, SME2508, 10:14:34:00-10:14:48:00

thread turning

NARRATION (VO):

TH29B, SME2508, 10:23:45:00-10:25:04:00 thread turning, alternate shot

THREAD TURNING CAN CREATE RIBBON CHIPS,

BUT THREADING INSERTS WITH A CHIP

CONTROL GROOVE BREAK THESE LONG CHIPS.

SCENE 30.

TH30A, SME2537, 01:17:51:00-01:17:59:00 thread turning operation
TH30B, SME4391, 23:01:05:00-23:01:17:00 zoom out, full profile insert
TH30C, still, partial profile insert
TH30D, SME4391, 23:38:03:00-23:38:10:00 zoom in, multi-tooth insert
TH30E, SME4413, 06:07:38:00-06:07:55:00 thread turning plastic bolt

NARRATION (VO):

THERE ARE THREE PRIMARY TYPES OF

THREADING INSERTS...,

THE FULL PROFILE OR TOPPING INSERT...,

THE PARTIAL PROFILE OR NON-TOPPING

INSERT...,

AND THE MULTI-TOOTH INSERT.

SCENE 31.

TH31A, SME4391, 23:12:44:00-23:13:04:00 c.u. full profile insert, thread turning TH31B, SME4391, 23:09:44:00-23:10:06:00 c.u. full profile insert, thread turning, alternate shot

NARRATION (VO):

A FULL PROFILE INSERT CUTS THE FULL

THREAD FORM -- THE ROOT, FLANK, AND

CREST -- TO REQUIRED SPECIFICATIONS -
BUT ONLY FOR ONE THREAD PITCH.

SCENE 32.

TH32A, SME4391, 23:36:26:00-23:37:38:00 c.u. partial profile insert, thread turning

NARRATION (VO):

THE PARTIAL PROFILE INSERT CAN BE USED FOR DIFFERENT THREAD PITCHES. BUT IT DOES NOT CUT THE CREST FLAT, THUS REQUIRING A SECONDARY OPERATION.

SCENE 33.

TH33A, SME4391, 23:39:38:00-23:40:02:00 c.u., multi-toothed turning operation

NARRATION (VO):

FOR MORE RAPID THREAD CUTTING, A MULTITOOTHED TOOL IS AVAILABLE. THE TOOL IS A INSERT WITH 3 TO 10 TEETH AT INCREMENTAL DEPTHS. WHEN FED INTO THE WORKPIECE IT PROGRESSIVELY CUTS AND FINISHES THE

THREAD.

SCENE 34.

TH34A, SME4391, 23:07:26:00-23:07:43:00 thread turning, freeze last frame if necessary

TH34B, CGS: Radial Infeed
Flank Infeed
Alternating Flank
Modified Flank

NARRATION (VO):

THERE ARE FOUR WAYS TO FEED A THREADING

TOOL TO THE ROTATING WORKPIECE,

INCLUDING:

RADIAL INFEED,

FLANK INFEED,

ALTERNATING FLANK,

AND MODIFIED FLANK.

SCENE 35.

TH35A, CGS: Radial Infeed
TH35B, ANI: radial infeed whole
TH35C, ANI: radial infeed 01
TH35D, ANI: radial infeed 02
TH35E, ANI: radial infeed 03
TH35F, ANI: radial infeed 04
TH35G, ANI: radial infeed 05
TH35H, ANI: radial infeed 06
TH35I, ANI: radial infeed 07
TH35J, ANI: radial infeed 07
TH35J, ANI: radial infeed 08

TH35K, ANI: radial infeed finished

SCENE 36.

TH36A, CGS: Flank Infeed
TH36B, ANI: flank infeed whole
TH36C, ANI: flank infeed 01
TH36D, ANI: flank infeed 02
TH36E, ANI: flank infeed 03
TH36F, ANI: flank infeed 04
TH36G, ANI: flank infeed 05
TH36H, ANI: flank infeed 06
TH36I, ANI: flank infeed 07
TH36J, ANI: flank infeed 08
TH36K, ANI: flank infeed 08
TH36K, ANI: flank infeed finished

NARRATION (VO):

RADIAL INFEED IS THE MOST COMMON. THE

INSERT PROGRESSES PERPENDICULAR TO THE

CENTERLINE OF THE WORK AND BOTH FLANKS

CUT SIMULTANEOUSLY.

NARRATION (VO):

IN FLANK INFEED, SUCCESSIVE PASSES ARE

MADE AT THE SAME FLANK ANGLE, WITH ONLY

THE LEADING EDGE IN THE CUT.

SCENE 37.

TH37A, CGS: Alternating Flank
TH37B, ANI: alternating flank whole
TH37C, ANI: alternating flank A 01
TH37D, ANI: alternating flank B 01
TH37E, ANI: alternating flank A 02
TH37F, ANI: alternating flank B 02
TH37G, ANI: alternating flank A 03
TH37H, ANI: alternating flank B 03

NARRATION (VO):

THE ALTERNATING FLANK METHOD MAY BE USED FOR CUTTING LARGE, COARSE THREADS IN WHICH THE INSERT CUTS WITH ONE FLANK AND

TH37I, ANI: alternating flank A 04 SWITCHES TO THE OPPOSITE FLANK ON THE TH37J, ANI: alternating flank B 04 TH37K, ANI: alternating flank A 05 NEXT PASS. TH37L, ANI: alternating flank finished

SCENE 38.

TH38A, CGS: Modified Flank TH38B, ANI: modified flank whole TH38C, ANI: modified flank 01 TH38D, ANI: modified flank 02 TH38E, ANI: modified flank 03 TH38F, ANI: modified flank 04 TH38G, ANI: modified flank 05 TH38H, ANI: modified flank 06 TH38I, ANI: modified flank 07 TH38J, ANI: modified flank 08

TH38K, ANI: modified flank finished

--- TOUCH BLACK ---

SCENE 39.

TH39A, CGS: Thread Chasing TH39B, SME4384, 15:22:22:00-15:22:37:00 zoom out, chaser dies

TH39C, SME4384, 15:19:26:00-15:19:54:00 chasing operation

SCENE 40.

TH40A, SME2610, 02:27:18:00-02:27:23:00 adjustable die

TH40B, SME2610, 02:27:32:00-02:27:36:00 adjustable die

TH40C, SME2610, 02:28:00:00-02:28:07:00 adjustable die

TH40D, SME4384, 15:20:50:00-15:21:32:00 zoom in, automatic chasing

SURFACE FINISH.

THE MODIFIED FLANK METHOD COMBINES THE

USING BOTH SIDES OF THE INSERT TO CUT.

THIS METHOD OFFERS THE BEST COMPROMISE

OF CHIP CONTROL, HEAT DISSIPATION, AND

RADIAL AND FLANK IN-FEED APPROACHES

NARRATION (VO):

NARRATION (VO):

THREAD CHASING USES A DIE OR CUTTERS CALLED CHASERS THAT ARE MOUNTED IN HOLDERS ON A HEAD CARRIED BY A MACHINE TOOL SPINDLE. THREADS ARE CREATED BY FORCING CYLINDRICAL BLANKS INTO THESE ROTATING DIES.

NARRATION (VO):

THE CHASERS CAN BE SOLID, OR ADJUSTABLE FOR MANUAL THREADING..., OR AN OPEN DIE WHICH IS MORE SUITED TO AUTOMATIC THREADING. THIS DIE OPENS AFTER A PASS TO EJECT THE FINISHED PART AND RECEIVE THE NEXT WORKPIECE. THE CHASER DOES NOT HAVE TO BE BACKED OFF THE WORKPIECE, AS IS NECESSARY WITH A

FIXED DIE.

SCENE 41.

TH41A, SME2610, 02:19:53:00-02:20:02:00 c.u., automatic chasing TH41B, SME2610, 02:01:20:00-02:01:26:00 old chasers before removal

TH41C, SME2610, 02:05:45:00-02:05:56:00

new chasers after installation

SCENE 42.

TH42A, CGS: Thread Milling TH42B, SME4378, 08:10:12:00-08:10:25:00 internal thread milling operation TH42C, SME4391, 23:32:41:00-23:32:53:00 zoom in, multitooth thread milling tool TH42D, SME4391, 23:28:21:00-23:28:42:00 zoom in, internal thread milling

SCENE 43.

TH43A, SME4391, 23:30:33:00-23:31:12:00 thread milling operation

SCENE 44.

continue previous shot

NARRATION (VO):

CHASERS ARE MADE OF HIGH-SPEED STEEL, OR USE CARBIDE INSERTS AS THEIR CUTTING ELEMENTS. THEY CAN BE CHANGED TO VARIOUS PITCH DIAMETERS FOR A GIVEN THREAD SIZE.

--- TOUCH BLACK ---

NARRATION (VO):

THREAD MILLING CAN BE DONE ON INTERNAL AND EXTERNAL SURFACES, WITH SOLID OR INDEXABLE INSERT-TYPE TOOLS. ON INTERNAL SURFACES, THREAD MILLING IS PREFERRED OVER TAPPING FOR HOLES LARGER THAN AN INCH AND A QUARTER, OR THIRTY MILLIMETERS.

NARRATION (VO):

THREAD MILLING REQUIRES A MACHINE WITH THREE-AXIS CONTROL, CAPABLE OF HELICAL INTERPOLATION.

NARRATION (VO):

THREAD MILLING COMBINES THREE MOTIONS: THE CIRCULAR ROTATION OF THE MILLING TOOL CARRYING THE THREAD PROFILE SHAPE ABOUT ITS OWN AXIS, THE ORBITING MOTION AROUND THE WORKPIECE, AND THE LONGITUDINAL MOTION OF THE TOOL.

--- TOUCH BLACK ---

SCENE 45.

TH45A, SME2577, 01:08:14:00-01:08:17:00 external manual threading

TH45B, SME2537, 01:04:36:00-01:04:48:00 external thread turning

TH45C, SME2610, 02:07:57:00-02:08:01:00 chasing operation

TH45D, SME4391, 23:31:15:00-23:31:25:00 zoom out, external thread milling

SCENE 46.

TH46A, CGS: Thread Grinding

TH46B, SME2621, 01:05:02:00-01:05:14:00

small part, thread grinding

TH46C, SME2621, 01:08:38:00-01:08:50:00

large part, thread grinding

TH46D, SME2621, 01:12:33:00-01:12:41:00

internally threaded part

~~---- 45

TH47A, SME4391, 23:15:50:00-23:16:12:00 external thread turning with cutting fluids

TH47B, SME2632, 02:05:16:00-02:05:30:00 cutting fluid in threading operation TH47C, SME2631, 01:23:39:00-01:23:52:00 cutting fluid in threading operation TH47D, SME4384, 15:15:03:00-15:15:20:00 fluid used in threading chasing operation TH47E, SME2621, 01:02:45:00-01:03:08:00 cutting fluid in thread grinding operation

NARRATION (VO):

THE EXTERNAL THREAD CUTTING TECHNIQUES

COVERED SO FAR WORK BEST WITH RELATIVELY

SOFT METALS.

NARRATION (VO):

FOR HARD MATERIALS, OR WHERE HIGH

PRECISION IS ESSENTIAL, THREADS CAN BE

GROUND. THIS IS A MORE COSTLY TECHNIQUE

REQUIRING SPECIALIZED EQUIPMENT AND

GRINDING WHEELS. THREAD GRINDING CAN BE

USED FOR BOTH EXTERNAL...,

AND INTERNAL THREADS.

--- TOUCH BLACK ---

NARRATION (VO):

IN ALL THREAD-CUTTING OPERATIONS,

CUTTING FLUIDS ARE IMPORTANT FOR COOLING

THE WORK AREA, FLUSHING AWAY CHIPS, AND

MAINTAINING LUBRICITY BETWEEN THE

CUTTING OR FORMING TOOLS AND THE

WORKPIECE. AN EXCEPTION TO THIS RULE ARE

CAST IRON PARTS, WHICH ARE USUALLY CUT

DRY.

--- TOUCH BLACK ---

SCENE 48.

TH48A, CGS: Thread Rolling

TH48B, SME2575, 01:08:15:00-01:08:29:00

thread rolling operation

SCENE 49.

continue previous shot

TH49A, **SME2575**, **01:23:05:00-01:23:20:00** c.u. die plates

TH49B, SME4390, 22:05:41:00-22:06:05:00 zoom in, roll forming operation

TH49C, **SME2575**, **01:24:26:00-01:24:45:00** roll forming operation

TH49D, SME2612, 03:04:52:00-03:06:13:00 zoom in, roll forming operation

SCENE 50.

TH50A, SME2575, 01:15:52:00-01:16:09:00 threads rolling out of machine, tilt to fasteners in bin

TH50B, SME3100, 05:22:16:00-05:22:28:00 stress relieving operation on fasteners

SCENE 51.

TH51A, SME2575, 01:10:28:00-01:10:53:00 blanks being fed between plates, slow motion

TH51B, CGS: Blanks Fed Manually to Show

NARRATION (VO):

THREAD ROLLING IS USED CHIEFLY TO MAKE EXTERNALLY THREADED COMMERCIAL FASTENERS IN HIGH VOLUMES.

NARRATION (VO):

THREAD ROLLING IS A COLD-FORMING PROCESS
THAT USES TWO FLAT DIES, CALLED PLATES,
OR TWO OR MORE AXIALLY PLACED DIE
ROLLERS TO FORM A THREAD ON A WORKPIECE
BLANK. THE THREAD-SHAPED DIE SURFACES
FORCE A THREAD CONFIGURATION ONTO THE
WORKPIECE SURFACE. THREAD ROLLING
PRODUCES A STRONGER THREAD THAN THE
THREAD CUTTING PROCESS BECAUSE THE METAL
IS COLD-WORKED AS IT IS DISPLACED OR
REARRANGED.

NARRATION (VO):

THREAD ROLLING IS DONE AT ROOM

TEMPERATURE ON SOFTER MATERIALS SUCH AS

ALUMINUM OR LOW-CARBON STEELS. HARDER

METALS MUST BE HEATED PRIOR TO THREAD

ROLLING TO PROMOTE METAL FLOW. AFTER

ROLLING, PARTS MAY BE HEAT-TREATED TO

CHANGE THEIR MECHANICAL PROPERTIES.

NARRATION (VO):

THE FLAT-PLATE TECHNIQUE REQUIRES THE

Process

PLATES BE POSITIONED A FIXED DISTANCE

APART, WHICH ESTABLISHES THE FASTENER'S

MINOR DIAMETER. BLANKS ARE FED BETWEEN

THE PLATES AS THEY MOVE RELATIVE TO EACH

OTHER. THE BLANK IS USUALLY TURNED FROM

5 TO 10 REVOLUTIONS TO COMPLETE THE

THREAD.

SCENE 52.

TH52A, SME2575, 01:10:56:00-01:11:04:00 flat plate rolling on reciprocating die machine

SCENE 53.

TH53A, SME2612, 03:03:08:00-03:03:21:00 cylindrical thread rolling workpiece

SCENE 54.

TH54A, SME4384, 15:37:36:00-15:38:02:00 zoom in, cylindrical rolling operation

SCENE 55. continue previous shot

NARRATION (VO):

FLAT-PLATE THREAD ROLLING IS DONE ON A RECIPROCATING DIE MACHINE.

NARRATION (VO):

RADIAL OR CYLINDRICAL DIE ROLLING

MACHINES ARE CAPABLE OF GENERATING

THREADS ON LARGER DIAMETER WORKPIECES

THAN WITH FLAT PLATE ROLLING.

NARRATION (VO):

IN CYLINDRICAL THREAD ROLLING, THREADS

ARE PRODUCED BY AN IN-FEED PROCESS. TWO

OR THREE CIRCULAR DIES ARE FED AGAINST A

WORKPIECE, FORMING THE DESIRED THREAD.

NARRATION (VO):

MACHINES USING TWO DIES FOR RADIAL

THREAD ROLLING CAN APPLY GREATER

PRESSURE TO THE WORKPIECE THAN THREE-DIE

MACHINES, SINCE THEY CAN USE LARGE

DIAMETER DIES REGARDLESS OF WORK

DIAMETER.

SCENE 56.

TH56A, SME2629, 02:01:44:00-02:01:53:00 rolling attachment on lathe

TH56B, SME2629, 02:13:46:00-02:13:56:00 rolling operation on lathe

TH56C, SME2629, 02:11:26:00-02:11:44:00 attachment contacting workpiece

TH56D, SME2629, 02:12:27:00-02:12:42:00 attachment retracting

TH56E, SME2629, 02:13:24:00-02:13:35:00 small rolling attachment

NARRATION (VO):

THREAD ROLLING ATTACHMENTS CARRYING ONE
OR MORE CIRCULAR THREAD DIES ARE ALSO
AVAILABLE FOR MOUNTING ON MACHINE TOOLS,
USUALLY LATHES. IN OPERATION, THE
ATTACHMENT EASES INTO THE ROTATING
WORKPIECE TO FORM THE THREAD. ONCE THE
THREAD IS COMPLETELY FORMED, THE
ATTACHMENT RETRACTS. BECAUSE THE
WORKPIECE IS UNSUPPORTED, THIS TECHNIQUE
IS LIMITED TO SHORT OR VERY STIFF
WORKPIECES.

--- FADE TO BLACK ---

SCENE 57.

TH57A, CGS: Internal Threads

white text, centered on background

FMP BKG, motion background

SCENE 58.

TH58A, SME2575, 01:26:04:00-01:26:18:00 zoom out finished internal thread rolled parts

NARRATION (VO):

TO CREATE INTERNAL THREADS, IT IS

POSSIBLE TO INTERNALLY THREAD ROLL A

WORKPIECE. HOWEVER, THE METAL MUST BE

FAIRLY SOFT AND THE WORKPIECE'S WALL

MUST BE THICK ENOUGH TO RECEIVE THE

THREAD.

SCENE 59.

TH59A, SME4391, 23:20:06:00-23:20:32:00

thread turning operation

TH59B, SME4384, 15:36:34:00-15:37:20:00

thread turning operation

NARRATION (VO):

INTERNAL THREADS CAN ALSO BE GENERATED

TH59C, SME4351, 03:44:23:00-03:44:41:00 thread turning operation, alternate shot

BY TURNING, USING A THREADING INSERT

HELD IN A BORING BAR. BECAUSE THE

CUTTING TOOL IS LONG, STABILITY AND TOOL

DEFLECTION ARE IMPORTANT ISSUES TO

ADDRESS.

SCENE 60.

TH60A, SME4384, 15:29:37:00-15:30:01:00 zoom in, large tapping operation TH60B, CGS: Tapping

NARRATION (VO):

BUT BY FAR THE MOST TYPICAL PROCESS FOR

GENERATING INTERNAL THREADS IS TO CUT

THEM WITH A TAP. A TAP HAS A PROGRESSION

OF SHARP THREAD-CUTTING SECTIONS ON ITS

PERIPHERY.

SCENE 61.

TH61A, SME4367, 19:18:36:00-19:18:45:00 zoom out, tapping operation
TH61B, SME4389, 21:24:48:00-21:24:59:00

TH61B, SME4389, 21:24:48:00-21:24:59:00 drilling hole

TH61C, SME4389, 21:26:49:00-21:27:10:00 zoom out, manually tapping hole

NARRATION (VO):

THE TAPPING OPERATION IS USUALLY A

PROCESS OF TWO OR MORE STEPS. FIRST, A

HOLE IS DRILLED INTO THE WORKPIECE WITH

SLIGHTLY SMALLER DIAMETER THAN THE FINAL

THREADED HOLE. THEN A ROTATING TAP IS

DRIVEN INTO THE HOLE TO CUT A THREAD

SHAPE INTO THE HOLE'S WALL AS THE TAP

MOVES AXIALLY.

SCENE 62.

TH62A, SME4389, 21:28:29:00-21:28:41:00 tilt, square base of tap

NARRATION (VO):

BECAUSE TAPPING REQUIRES HIGH TORQUE,

TAPS USUALLY HAVE A SQUARE BASE THAT CAN

BE SECURELY GRIPPED.

SCENE 63.

TH63A, SME2631, 01:21:53:00-01:22:00:00 tap entering hole

TH63B, SME4389, 21:14:54:00-21:15:02:00 zoom out, split sleeve driver, compressing

NARRATION (VO):

THERE ARE THREE GENERAL TYPES OF TAP

tap tightly

TH63C, SME2577, 01:20:15:00-01:20:20:00 tap inserted into collet
TH63D, SME2631, 01:27:26:00-01:27:36:00

collet holder, holding tap

CONVENTIONAL COLLETS...,

THE TAP TIGHTLY. THERE ARE ALSO

AND COLLET HOLDERS WHICH ARE USED WITH
THE COLLET, AND SPECIALLY SIZED TO THE

HOLDERS. THE MOST COMMON IS THE SPLIT-

SLEEVE DRIVER, WHICH COMPRESSES TO HOLD

SCENE 64.

TH64A, SME4384, 15:26:29:00-15:27:12:00 zoom out, solid tap operation

NARRATION (VO):

TAP.

SOLID TAPS ARE THE MOST COMMONLY USED TAPS. THEY CAN RANGE IN DIAMETER FROM ABOUT FIFTY THOUSANDTHS OF AN INCH OR ONE MILLIMETER, TO ABOUT TWO INCHES OR FIFTY MILLIMETERS.

SCENE 65.

TH65A, SME4388, 20:05:11:00-20:05:20:00 small tap, tapping multiple holes TH65B, SME2577, 01:22:07:00-01:22:12:00 tap with steep chamfer, freeze last frame TH65C, SME2577, 01:22:53:00-01:23:03:00 tap with no chamfer

NARRATION (VO):

THE MAIN DIFFERENCE AMONG TAPS IS THE

AMOUNT OF CHAMFER AT THE CUTTING END.

THE STEEPER THE CHAMFER, THE MORE

GRADUAL THE CUTTING ACTION. THE LESS

CHAMFER, THE GREATER THE CUTTING POWER.

SCENE 66.

TH66A, SME4388, 20:26:33:00-20:26:54:00 tapping on multiple holes

NARRATION (VO):

AS A RULE, THE LONGEST POSSIBLE CHAMFER
ALLOWS THE BEST CUTTING EFFICIENCY, TAP
LIFE, AND SIZE CONTROL.

SCENE 67.

NARRATION (VO):

THREE COMMONLY USED SOLID TAP FORMS ARE:
THE TAPER TAP,

THE PLUG TAP,

AND THE BOTTOMING TAP.

SCENE 68.

TH68A, CGS: Taper Tap

TH68B, SME2652, 00:03:08:00-00:03:21:00

taper tap starting thread

SCENE 69.

TH69A, CGS: Plug Tap

TH69B, SME2577, 01:19:51:00-01:20:01:00

plug tap, tapping hole

SCENE 70.

TH70A, CGS: Bottoming Tap

TH70B, SME2577, 01:23:16:00-01:23:26:00

bottoming tap finishing hole

SCENE 71.

TH71A, SME2632, 02:06:54:00-02:07:06:00

tapping operation

TH71B, SME2632, 02:13:12:00-02:13:32:00 zoom out, tapping operation, alternate

shot

TH71C, SME2652, 00:01:52:00-00:02:00:00

two flute tap

TH71D, SME2652, 00:01:30:00-00:01:38:00

four flute tap

SCENE 72.

TH72A, SME2652, 00:03:53:00-00:04:06:00

four flute tap threading

TH72B, SME2652, 00:03:25:00-00:03:40:00

two flute tap threading

SCENE 73.

TH73A, still, straight flute tap

TH73B, still, spiral flute tap

NARRATION (VO):

THE TAPER TAP HAS THE GREATEST CHAMFER

AND DOES THE LEAST CUTTING OF THE THREE.

IT IS USED TO START THE THREADING.

NARRATION (VO):

THE PLUG TAP HAS AN INTERMEDIATE CHAMFER

AND IS A GENERAL PURPOSE TAP.

NARRATION (VO):

THE BOTTOMING TAP HAS THE LEAST CHAMFER

AND IS USED FOR FINISHING OPERATIONS.

NARRATION (VO):

TAPS HAVE FLUTES OR CHANNELS THAT CREATE

CUTTING EDGES. THESE FLUTES ALLOW CHIPS

OUT OF THE HOLE AND CUTTING FLUID IN.

TAPS USUALLY HAVE TWO...,

THREE...,

OR FOUR FLUTES.

NARRATION (VO):

A FOUR-FLUTE TAP CUTS BETTER AND

SMOOTHER BECAUSE IT HAS MORE CUTTING

EDGES. TWO- AND THREE-FLUTE TAPS HAVE

MORE SPACE FOR CHIPS, AND ARE STRONGER.

NARRATION (VO):

TAPS MAY HAVE STRAIGHT...,
OR SPIRAL FLUTES.

SCENE 74.

TH74A, SME4389, 21:22:08:00-21:22:28:00 zoom out, straight tap producing chips

NARRATION (VO):

STANDARD STRAIGHT-FLUTE TAPS TEND TO

PRODUCE SMALL CHIPS. ORDINARILY THIS IS

NOT A PROBLEM, BUT IN A BLIND HOLE THESE

CHIPS TEND TO COLLECT AT THE BOTTOM OF

THE HOLE, OR CLOG THE FLUTES.

SCENE 75.

TH75A, **SME2577**, **01:03:48:00-01:04:00:00** manual spiral tapping operation

NARRATION (VO):

SPIRAL-FLUTE TAPS PULL LONGER CHIPS UP
AND OUT OF THE HOLE, MAKING THEM
PARTICULARLY USEFUL IN TAPPING BLIND
HOLES.

SCENE 76.

TH76A, SME4393, 02:06:10:00-02:06:58:00 zoom out, tapping operation on multiple holes

NARRATION (VO):

MOST TAPS ARE MADE FROM HIGH-SPEED

STEEL, BUT CARBIDE OR CARBON STEEL IS

SOMETIMES USED. SOLID CARBIDE TAPS CUT

FASTER AND CLEANER, AND LAST LONGER.

SCENE 77.

TH77A, SME4091, 07:26:28:00-07:26:46:00 tapping operation on multiple holes

NARRATION (VO):

TAPS ARE DESIGNED CHIEFLY TO CUT STEEL,
BUT THERE ARE SPECIAL TAPS FOR WORKING
WITH ALUMINUM, NICKEL ALLOYS, AND CAST
IRON.

--- TOUCH BLACK ---

SCENE 78.

TH78A, SME4372, 02:15:14:00-02:15:26:00 tapping operation

NARRATION (VO):

HOW MUCH A TAP CUTS PER REVOLUTION

DEPENDS ON THE ANGLE AT WHICH THE

CUTTING TOOTH ON THE DIE CONTACTS THE

WORKPIECE.

SCENE 79.

TH79A, CGS: Rake/Hook Angle

TH79B, ANI: tap

TH79C, ANI: tap, rake angle

TH79D, ANI: tap, rake angle, center line

TH79E, CGS: Negative Rake TH79F, ANI: negative tap

TH79G, ANI: negative tap, rake lines

TH79H, CGS: Zero Rake TH79I, ANI: zero tap

TH79J, ANI: zero tap, rake lines

TH79K, CGS: Positive Rake TH79L, ANI: positive tap

TH79M, ANI: positive tap, rake lines

SCENE 80.

TH80A, SME4372, 02:35:44:00-02:36:02:00 tapping operation on two holes TH80B, SME2577, 01:23:59:00-01:24:08:00 tapping too fast, tool breakage TH80C, SME2632, 02:09:32:00-02:09:44:00 tapping with lubrication TH80D, SME4111, 02:33:16:00-02:33:34:00 tapping multiple holes with lubrication, alternate shot

SCENE 81

TH81A, SME4388, 20:04:15:00-20:04:38:00 forming tap used on multiple holes
TH81B, zoom out, still, thread forming tap
TH81C, SME4388, 20:01:58:00-20:02:09:00 zoom out, forming tap used on multiple holes

TH81D, SME2632, 02:14:28:00-02:14:44:00

NARRATION (VO):

THIS ANGLE IS CALLED THE RAKE OR HOOK
ANGLE, AND IS DEFINED AS THE ANGLE
BETWEEN A LINE THROUGH THE CUTTING FACE
AND A RADIAL LINE FROM THE TOOL CENTER
TO THE TOOTH TIP. GENERALLY, THE MORE
DUCTILE THE MATERIALS, THE GREATER THE
RAKE ANGLE, BECAUSE THE DIE TOOTH CAN
TAKE A BIGGER BITE OUT OF SOFTER
MATERIALS.

NARRATION (VO):

TAPPING SPEED IS CRITICAL IN DETERMINING
HOW A TAP CUTS, BECAUSE IT AFFECTS
THREAD QUALITY AND TAP LIFE. TOO MUCH
SPEED CAUSES THE TAP TO BECOME DULL OR
BREAK, OR TEARS UP THE METAL. HIGH-SPEED
TAPPING ALSO MAKES IT DIFFICULT TO
ACHIEVE GOOD LUBRICATION AND CHIP
REMOVAL.

NARRATION (VO):

FOR SOFTER METALS, OR WHERE IT IS

IMPORTANT NOT TO MAKE CHIPS, THREAD

FORMING TAPS OR ROLL TAPS MAY BE USED.

thread forming tap operation, alternate shot

ROLL TAPS HAVE NO CUTTING EDGES OR

FLUTES. THEY GENERATE MORE FRICTIONAL

HEAT THAN STANDARD TAPS, BECAUSE THEY

FORM RATHER THAN CUT THE THREAD.

--- TOUCH BLACK ---

SCENE 82.

TH82A, SME4389, 21:22:30:00-21:22:40:00 manual tapping

TH82B, SME4389, 21:20:13:00-21:20:28:00 hole being drilled

TH82C, SME4389, 21:30:53:00-21:31:03:00 zoom out, placing tap in tap wrench TH82D, SME4389, 21:21:50:00-21:22:14:00 tapping operation on hole

SCENE 83.

TH83A, SME4386, 19:02:27:00-19:02:45:00 zoom out, flexible arm used to tap part

SCENE 84.

TH84A, SME2632, 02:01:38:00-02:01:47:00 dedicated machine tool tapping TH84B, SME4387, 19:12:28:00-19:12:34:00 tapping on lathe TH84C, SME4308, 08:10:12:00-08:10:27:00 zoom in, tapping on mill

TH84D, SME4388, 20:03:28:00-20:03:36:00 zoom in, tapping on machining center TH84E, still, drill & tap machine TH84F, tapping with drill & tap machine TH84G, SME4393, 03:21:42:00-03:22:11:00

zoom out, multi-spindle tapping operation

NARRATION (VO):

TAPPING IS DONE MANUALLY FOR LOW-VOLUME PRODUCTION. MANUAL TAPPING INVOLVES

DRILLING A HOLE...,

PUTTING A TAP IN A TAP WRENCH...,

AND MANUALLY THREADING THE HOLE.

NARRATION (VO):

IN AN OPERATION WHERE PRECISION TAP

POSITIONING IS NOT CRITICAL, IT MAY BE

PRACTICAL TO MANUALLY PLACE THE TAPPING

TOOL IN THE HOLE. IN THESE CASES,

FLEXIBLE ARMS CAN BE USED.

NARRATION (VO):

FOR HIGHER VOLUMES, TAPPING IS MOST

COMMONLY ACCOMPLISHED USING DEDICATED

TAPPING MACHINE TOOLS...,

LATHES...,

MILLS...,

MACHINING CENTERS...,

DRILL AND TAP MACHINES...,

OR SPECIALIZED MULTI-SPINDLE TAPPING

MACHINES.

--- TOUCH BLACK ---

SCENE 85.

TH85A, SME4372, 02:16:27:00-02:16:39:00 tapping operation

SCENE 86.

TH86A, SME2632, 02:02:28:00-02:02:48:00 floating head tap, tapping

SCENE 87.

TH87A, SME2632, 02:06:29:00-02:06:45:00 rigid/synchronous tap driving operation TH87B, SME4352, 04:40:09:00-04:40:49:00 zoom out, rigid/synchronous tap driving operation on multiple holes, alternate shot

SCENE 88.

TH88A, SME4387, 19:09:56:00-19:10:18:00 zoom in, tapping head operation

NARRATION (VO):

FOR ACCURATELY POSITIONING AND PROPERLY DRIVING TAPS, THREE TECHNIQUES ARE USED IN TAPPING OPERATIONS.

NARRATION (VO):

THE FIRST TECHNIQUE USES A TAP HOLDER

THAT CAN ACCOMMODATE BOTH MISALIGNMENT

AND DIFFERENCES IN TENSION AND

COMPRESSION BETWEEN THE TAP AND SPINDLE.

THIS IS CALLED A FLOATING HEAD.

NARRATION (VO):

THE SECOND REQUIRES THE ABILITY TO

PROGRAM THE SPINDLE DRIVE SO THAT THE

TORQUE DELIVERED TO THE TAP IS EXACTLY

WHAT IS NEEDED. THIS IS CALLED RIGID OR

SYNCHRONOUS TAP DRIVING.

NARRATION (VO):

THE THIRD TECHNIQUE INVOLVES ADDING A

TAPPING HEAD TO AN EXISTING MACHINE

TOOL. THIS TAPPING HEAD ADAPTS THE

MACHINE TOOL'S SPINDLE TORQUE TO THE

TAPPING OPERATION, MAINTAINING THE BEST

TAP CUTTING SPEED AND REVERSING

DIRECTION AT THE END OF THE TAPPING

STROKE. THESE SELF-REVERSING TAPPING HEADS ARE OFTEN PROGRAMMABLE.

SCENE 89.

TH89A, SME4387, 19:08:34:00-19:09:02:00

tapping operation

TH89B, CGS: Accuracy Required Production Volume

Tap Size

TH89C, SME4372, 02:37:15:00-02:37:24:00

rigid tapping operation

TH89D, SME4388, 20:01:31:00-20:01:40:00

zoom out, tapping using self-reversing

head

NARRATION (VO):

DETERMINING WHICH OF THESE THREE

TECHNIQUES IS BEST SUITED FOR A SPECIFIC

TAPPING OPERATION DEPENDS ON THE

ACCURACY REQUIRED, PRODUCTION VOLUME,

AND TAP SIZE. RIGID TAPPING CAN CONTROL

THE TENSION AND COMPRESSION ON THE TAP,

BUT PROCESSES AT A SLOWER RATE THAN

SELF-REVERSING HEADS.

--- FADE TO BLACK ---

SCENE 90.

TH90A, CGS: Thread Quality & Verification

white text, centered on background

FMP BKG, motion background

SCENE 91.

TH91A, SME4141, 12:41:02:00-12:41:18:00

zoom in, threading operation

TH91B, SME3330, 08:06:50:00-08:07:15:00 zoom out, cone-point screws being used in

assembly operation

TH91C, SME4390, 23:00:36:00-23:00:44:00

zoom out, auto seat belt bolt

TH91D, SME4016, 00:50:38:00-00:50:55:00

space shuttle taking off

TH91E, still, medical screws

TH91F, SME3936, 01:03:56:00-01:04:10:00

spaceship one landing

NARRATION (VO):

THE CONTROL AND QUALITY OF THREADING

OPERATIONS CAN BE PARTICULARLY

IMPORTANT, COMPARED WITH OTHER METAL-

WORKING OPERATIONS. THREADED PARTS HAVE

COMMONLY BEEN USED FOR CRITICAL SAFETY-

RELATED PURPOSES, SUCH AS BOLTS FOR

SECURING AUTOMOTIVE SEATBELTS, OR FOR

FASTENERS USED IN AEROSPACE,

AND MEDICAL APPLICATIONS.

SCENE 92.

TH92A, SME4384, 15:37:52:00-15:38:22:00

production of large bolt

NARRATION (VO):

TH92B, SME4384, 15:08:52:00-15:09:10:00 go-no-go gages used on large bolt

BECAUSE THREADED PARTS ARE EXPECTED TO CARRY HIGH LOADS AND FASTEN ASSEMBLIES TOGETHER SECURELY AND RELIABLY, THEY MUST NOT BE WEAKENED BY VARIATIONS IN THE THREADMAKING PROCESS. CRITICAL THREAD DIMENSIONS MUST ALSO MEET SPECIFIC TOLERANCES.

SCENE 93.

continue previous shot

TH93A, SME4253, 10:18:38:00-10:18:53:00 zoom out, go/no-go gages used on fastener TH93B, SME4141, 12:41:55:00-12:42:20:00 zoom out, go/no-go gage used on tiny fastener

TH93C, SME4141, 12:49:02:00-12:49:39:00 zoom out, go/no-go gage being used

NARRATION (VO):

THE DIMENSIONS OF THREADS CAN BE
INSPECTED WITH DIFFERENT LEVELS OF
VERIFICATION. IF A THREADED FASTENER IS
ONLY REQUIRED TO ASSEMBLE OTHER PARTS
TOGETHER WITHOUT SPECIFIC LOAD-CARRYING
REQUIREMENTS, A BASIC "GO/NO-GO" GAGE
MAY BE ADEQUATE FOR CHECKING ITS
THREADS. HOWEVER, THESE GAGES ONLY CHECK
WHETHER THE THREADS EXCEED THEIR MAXIMUM
ALLOWABLE DIMENSIONS; THEY CANNOT
CLEARLY VERIFY WHETHER THREAD DIMENSIONS
MEET THEIR MINIMUM SIZE TOLERANCE, OR
WHETHER THE THREAD PITCH DIAMETER AND
THREAD SHAPE ARE CORRECT.

SCENE 94.

TH94A, SME4262, 19:05:18:00-19:05:30:00 zoom out, screw-pitch gage being used TH94B, SME4253, 10:10:52:00-10:11:08:00 critical thread dimensions checked TH94C, SME4262, 19:07:06:00-19:07:25:00 zoom out, threaded fastener checked for roundness

NARRATION (VO):

FOR THREADED PARTS HAVING SPECIFIC

STRENGTH REQUIREMENTS IN SERVICE, A MORE

COMPLETE INSPECTION OF CRITICAL THREAD

DIMENSIONS IS REQUIRED. ALL MAXIMUM AND

MINIMUM DIAMETERS AND THREAD ANGLES ARE
CHECKED AND CHARTED. THIS MAKES PROCESS
VARIATIONS DUE TO TOOL WEAR VISIBLE OVER
TIME. AT THE HIGHEST LEVEL OF
INSPECTION, CHARACTERISTICS SUCH AS
ROUNDNESS AND TAPER ARE MONITORED,
REQUIRING EVEN MORE SOPHISTICATED THREAD
INSPECTION GAGES.

SCENE 95.

TH95A, SME4079, 15:34:00:00-15:34:30:00 zoom out, fatigue testing of thread

NARRATION (VO):

MECHANICAL TESTING, WHICH IS ALSO KNOWN

AS DESTRUCTIVE TESTING, IS USED TO

GATHER SPECIFIC PERFORMANCE OR PROPERTY

VALUES OF MATERIALS FOR DESIGN PURPOSES

AND QUALITY CONTROL. THIS IS DONE BY

FORCING MATERIALS TO FAIL USING VARIOUS

TESTING LOAD APPLICATIONS.

SCENE 96.

TH96A, SME4384, 15:07:46:00-15:08:19:00 ultrasonic testing of bolt, edit at multiple points

TH96B, CGS: Magnetic Particle Inspection
Ultrasonic Testing

NARRATION (VO):

NON-DESTRUCTIVE TESTING IS OFTEN

UTILIZED TO LOCATE FLAWS IN THREADED

PARTS. TWO COMMONLY USED NON-DESTRUCTIVE

TESTS ARE:

MAGNETIC PARTICLE INSPECTION...,
AND ULTRASONIC TESTING.

SCENE 97.

TH97A, CGS: Magnetic Particle Inspection TH97B, SME4384, 15:03:23:00-15:04:17:00 multiple bolts inspected under black light

NARRATION (VO):

MAGNETIC PARTICLE INSPECTION IS USED TO

LOCATE SURFACE AND NEAR-SURFACE FLAWS IN

PARTS PRODUCED FROM FERROMAGNETIC

MATERIALS SUCH AS IRON, STEEL AND NICKEL AND COBALT ALLOYS.

SCENE 98.

TH98A, SME4384, 15:01:06:00-15:01:28:00 zoom in, magnetic particle inspection TH98B, SME4384, 15:01:33:00-15:02:18:00 zoom out, magnetic particle inspection, alternate shot

TH98C, SME4384, 15:03:02:00-15:03:18:00 zoom out, bolt inspected under black light

SCENE 99.

TH99A, CGS: Ultrasonic Testing
TH99B, SME4384, 15:08:24:00-15:08:43:00
zoom in, ultrasonic testing of bolt
TH99C, SME4384, 15:07:08:00-15:07:28:00
zoom in, ultrasonic testing of bolt

NARRATION (VO):

THE PARTS BEING INSPECTED ARE MAGNETIZED

AND FINE MAGNETIC PARTICLES ARE APPLIED

TO THE SURFACE, TYPICALLY WHILE

SUSPENDED IN A LIQUID MEDIUM. THESE

PARTICLES ARE OFTEN COATED WITH A

FLUORESCENT MATERIAL FOR INSPECTION

USING AN ULTRAVIOLET OR BLACK LIGHT.

DISCONTINUITIES PERPENDICULAR TO THE

MAGNETIC FIELD CAUSE A LEAKAGE FIELD TO

FORM AT AND ABOVE THE SURFACE OF THE

PART AND HOLD THE PARTICLES THERE SO

THAT THE DISCONTINUITY CAN BE VISUALLY

EXAMINED.

NARRATION (VO):

ULTRASONIC TESTING INVOLVES THE USE OF
HIGH-FREQUENCY SOUND-WAVES, INTRODUCED
BY A TRANSDUCER INTO THE PART BEING
INSPECTED TO DETECT FLAWS, MEASURE
THICKNESS, OR EVALUATE PROPERTIES. THE
ENERGY OF THE ULTRASONIC WAVES IS
REFLECTED BACK TO THE TRANSDUCER BY ANY
DISCONTINUITIES, INDICATING THEIR
PRESENCE AND LOCATION.

--- FADE TO BLACK ---

SCENE 100. MUSIC UP AND UNDER FMP RVW, CGS: Review white text, centered on background NARRATION (VO): FMP BKG, motion background LET'S REVIEW THE MATERIAL CONTAINED IN THIS PROGRAM. SCENE 101. NARRATION (VO): TH07A, SME2578, 03:12:27:00-03:12:37:00 THE HELICAL THREAD OR SCREW FORM HAS TWO screw thread TH07B, SME4389, 21:05:04:00-21:05:16:00 zoom out, lead screw turning PRIMARY FUNCTIONS: TH07C, SME3330, 08:04:48:00-08:05:58:00 screws used in assembly operation TO TRANSMIT POWER AND MOTION..., TH07D, SME3928, 23:04:09:00-23:04:27:00 mechanical fasteners tightening composite AND TO ATTACH AND SECURE PARTS TOGETHER. assembly together, alternate shot SCENE 102. NARRATION (VO): TH09A, zoom in, still of external threads THO9B, zoom out, still of internal threads THERE ARE EXTERNAL..., AND INTERNAL THREADS. SCENE 103. NARRATION (VO): TH12A, CGS: Major Diameter THREADS ARE IDENTIFIED CHIEFLY BY THEIR TH12D, ANI: bolt, arrow and lines TH12G, ANI: nut, arrow and lines TH13A, CGS: Minimum/Minor Diameter MAJOR DIAMETER..., TH13D, ANI: bolt, arrow and lines TH13G, ANI: nut, arrow and lines MINIMUM DIAMETER..., TH14A, CGS: Thread Pitch TH14D, ANI: bolt edge, arrow and lines THREAD PITCH..., TH14D, ANI: DOI: Cago, LI
TH14G, ANI: nut edge, arrow and lines TH15A, CGS: Thread Pitch Diameter AND THREAD PITCH DIAMETER.

SCENE 104.

TH25A, SME4384, 15:40:11:00-15:40:28:00 c. u. external thread being produced

TH15E, ANI: bolt/nut with pitch diameter

TH25B, CGS: Hand Threading

Turning Chasing Milling Grinding Rolling

NARRATION (VO):

EXTERNAL THREADS CAN BE GENERATED BY:

HAND THREADING,

TURNING,

CHASING,

MILLING,

GRINDING,

AND ROLLING.

SCENE 105.

TH26A, CGS: Hand Threading TH26B, SME4389, 21:08:40:00-21:08:56:00 threading die fitted into holding collet TH26C, SME4389, 21:12:12:00-21:12:18:00 die positioned over hole, manually turned TH26D, SME4389, 21:12:38:00-21:13:35:00 c.u. die carving thread

NARRATION (VO):

THREADS ARE HAND-CUT USING A DIE FITTED IN A HOLDING COLLET THAT SLIPS OVER THE WORKPIECE. THE DIE CARVES A THREAD INTO THE WORKPIECE AS IT IS TURNED.

SCENE 106.

TH28A, CGS: Thread Turning

TH28B, SME4391, 23:43:11:00-23:44:08:00 c.u. thread turning

NARRATION (VO):

IN THREAD TURNING, THE CUTTING TOOL MOVES ALONG THE AXIS OF A ROTATING WORKPIECE, CUTTING A HELIX. SEVERAL PASSES ARE REQUIRED TO COMPLETE THE THREADS.

SCENE 107.

TH39A, CGS: Thread Chasing

chasing operation

NARRATION (VO):

TH39C, SME4384, 15:19:26:00-15:19:54:00 IN THREAD CHASING, THREADS ARE PRODUCED BY FORCING CYLINDRICAL BLANKS INTO ROTATING DIES.

SCENE 108.

TH42A, CGS: Thread Milling

TH43A, SME4391, 23:30:33:00-23:31:12:00 thread milling operation

NARRATION (VO):

THREAD MILLING IS USED FOR VERY PRECISE THREADING OPERATIONS. THIS IS USUALLY ACCOMPLISHED ON A MACHINING CENTER WITH CNC HELICAL INTERPOLATION.

SCENE 109.

TH46A, CGS: Thread Grinding

TH46C, SME2621, 01:08:38:00-01:08:50:00

large part, thread grinding

NARRATION (VO):

THREAD GRINDING IS OFTEN USED TO GENERATE THREADS IN VERY HARD MATERIALS

OR WHERE HIGH PRECISION IS REQUIRED.

SCENE 110.

TH48A, CGS: Thread Rolling

TH49B, SME4390, 22:05:41:00-22:06:05:00

zoom in, roll forming operation

SCENE 111.

TH60A, SME4384, 15:29:37:00-15:30:01:00 zoom in, large tapping operation

TH60B, CGS: Tapping

SCENE 112.

TH61C, SME4389, 21:26:49:00-21:27:10:00 zoom out, manually tapping hole TH87A, SME2632, 02:06:29:00-02:06:45:00 rigid/synchronous tap driving operation TH88A, SME4387, 19:09:56:00-19:10:18:00

zoom in, tapping head operation

SCENE 113.

TH81C, SME4388, 20:01:58:00-20:02:09:00 zoom out, forming tap used on multiple holes

SCENE 114.

TH94B, **SME4253**, **10:10:52:00-10:11:08:00** critical thread dimensions checked

TH91D, **SME4016**, **00:50:38:00-00:50:55:00** space shuttle taking off

TH92B, SME4384, 15:08:52:00-15:09:10:00 go-no-go gages used on large bolt

TH94C, SME4262, 19:07:06:00-19:07:25:00 zoom out, threaded fastener checked for roundness

TH95A, SME4079, 15:34:00:00-15:34:30:00 zoom out, fatigue testing of thread TH98C, SME4384, 15:03:02:00-15:03:18:00 zoom out, bolt inspected under black light TH99B, SME4384, 15:08:24:00-15:08:43:00 zoom in, ultrasonic testing of bolt

NARRATION (VO):

THREAD ROLLING PRODUCES A STRONGER

THREAD THAN THE THREAD CUTTING PROCESSES

BECAUSE THE METAL IS COLD-WORKED AS IT

IS PLASTICALLY DEFORMED INTO THREADS.

NARRATION (VO):

TAPPING IS THE MOST COMMONLY USED

TECHNIQUE TO GENERATE INTERNAL THREADS.

NARRATION (VO):

TAPS CAN BE MANUALLY DRIVEN...,

OR MOUNTED IN MACHINE TOOL SPINDLES...,

OR SPECIAL TAPPING HEADS.

NARRATION (VO):

THREAD-FORMING TAPS LOOK LIKE

CONVENTIONAL SCREWS, BUT HAVE SMALL

LOBES THAT FORM, RATHER THAN CUT, THE

THREAD.

NARRATION (VO):

THE QUALITY AND DIMENSIONS OF THREADED

PARTS MUST BE VERIFIED, SINCE THEY ARE

COMMONLY USED FOR CRITICAL SAFETY
RELATED PURPOSES. TO THIS END, DIFFERENT

LEVELS OF THREAD INSPECTION ARE

PERFORMED FOR BOTH HIGH- AND LOW-VOLUME

MANUFACTURING. ADDITIONALLY, MECHANICAL,

OR DESTRUCTIVE TESTING, IS USED TO

GATHER SPECIFIC PERFORMANCE OR PROPERTY

VALUES OF MATERIALS, WHILE NON
DESTRUCTIVE TESTING IS OFTEN UTILIZED TO

LOCATE FLAWS IN THREADED PARTS.

--- FADE TO BLACK ---

SCENE 115.
continue music, up and under
TH CRX, CGS, ROLL: credits
white text, fade up mid-screen
FMP EXM, extended motion background

Produced By:
Society of Manufacturing Engineers

Executive Producer:
Kristine Nasiatka

Producer/Director/Cameraman:
 Jerome T. Cook

Written By:
Michael Tolinski,
MText Technical Editing
Frederick Mason

Technical & Editorial Consulting: Dave Bengston, Johnson Gage Co.

Equipment Access Provided By:

Dunham Products, Inc.

The Dyson Corporation

ITW Workholding

Kennametal, Inc.

Protomatic

Tapmatic Corporation

Washtenaw Community College

Visual Materials Provided By: INDEX Corporation

Graphics:
Jerome T. Cook
Dennis Summers,
Quantum Dance Works

Production Assistance:
Lance Rosol

Video Editing:
Jerome T. Cook

SCENE 116.
continue motion background
FMP DIS, CGS: disclaimer
white text, centered on background

Some machinery in this program had safety equipment removed to allow better recording of certain processes.

Always read the safety information provided in the manufacturers' manual before machine operation.

SCENE 117. **FMP SME**, SME logo open, with music