FUNDAMENTAL MANUFACTURING PROCESSES

Threading

SCENE 1.

TH57A, CGS: Internal Threads

white text, centered on background

FMP BKG, motion background

SCENE 2.

TH58A, SME2575, 01:26:04:00-01:26:18:00 zoom out finished internal thread rolled

parts

SCENE 3.

TH59A, SME4391, 23:20:06:00-23:20:32:00

thread turning operation

TH59B, SME4384, 15:36:34:00-15:37:20:00

thread turning operation

TH59C, SME4351, 03:44:23:00-03:44:41:00

thread turning operation, alternate shot

SCENE 4.

TH60A, SME4384, 15:29:37:00-15:30:01:00

zoom in, large tapping operation

TH60B, CGS: Tapping

NARRATION (VO):

TO CREATE INTERNAL THREADS, IT IS

POSSIBLE TO INTERNALLY THREAD ROLL A

WORKPIECE. HOWEVER, THE METAL MUST BE

FAIRLY SOFT AND THE WORKPIECE'S WALL

MUST BE THICK ENOUGH TO RECEIVE THE

THREAD.

NARRATION (VO):

INTERNAL THREADS CAN ALSO BE GENERATED

BY TURNING, USING A THREADING INSERT

HELD IN A BORING BAR. BECAUSE THE

CUTTING TOOL IS LONG, STABILITY AND TOOL

DEFLECTION ARE IMPORTANT ISSUES TO

ADDRESS.

NARRATION (VO):

BUT BY FAR THE MOST TYPICAL PROCESS FOR

GENERATING INTERNAL THREADS IS TO CUT

THEM WITH A TAP. A TAP HAS A PROGRESSION

OF SHARP THREAD-CUTTING SECTIONS ON ITS

PERIPHERY.

SCENE 5.

TH61A, SME4367, 19:18:36:00-19:18:45:00

zoom out, tapping operation

NARRATION (VO):

TH61B, SME4389, 21:24:48:00-21:24:59:00 drilling hole

TH61C, SME4389, 21:26:49:00-21:27:10:00 zoom out, manually tapping hole

THE TAPPING OPERATION IS USUALLY A

PROCESS OF TWO OR MORE STEPS. FIRST, A

HOLE IS DRILLED INTO THE WORKPIECE WITH

SLIGHTLY SMALLER DIAMETER THAN THE FINAL

THREADED HOLE. THEN A ROTATING TAP IS

DRIVEN INTO THE HOLE TO CUT A THREAD

SHAPE INTO THE HOLE'S WALL AS THE TAP

MOVES AXIALLY.

SCENE 6.

TH62A, SME4389, 21:28:29:00-21:28:41:00 tilt, square base of tap

SCENE 7.

TH63A, SME2631, 01:21:53:00-01:22:00:00 tap entering hole

TH63B, SME4389, 21:14:54:00-21:15:02:00 zoom out, split sleeve driver, compressing tap tightly

TH63C, SME2577, 01:20:15:00-01:20:20:00 tap inserted into collet

TH63D, SME2631, 01:27:26:00-01:27:36:00 collet holder, holding tap

NARRATION (VO):

BECAUSE TAPPING REQUIRES HIGH TORQUE,

TAPS USUALLY HAVE A SQUARE BASE THAT CAN

BE SECURELY GRIPPED.

NARRATION (VO):

THERE ARE THREE GENERAL TYPES OF TAP
HOLDERS. THE MOST COMMON IS THE SPLITSLEEVE DRIVER, WHICH COMPRESSES TO HOLD
THE TAP TIGHTLY. THERE ARE ALSO
CONVENTIONAL COLLETS...,

AND COLLET HOLDERS WHICH ARE USED WITH THE COLLET, AND SPECIALLY SIZED TO THE TAP.

SCENE 8.

TH64A, SME4384, 15:26:29:00-15:27:12:00 zoom out, solid tap operation

NARRATION (VO):

SOLID TAPS ARE THE MOST COMMONLY USED TAPS. THEY CAN RANGE IN DIAMETER FROM ABOUT FIFTY THOUSANDTHS OF AN INCH OR ONE MILLIMETER, TO ABOUT TWO INCHES OR FIFTY MILLIMETERS.

SCENE 9.

TH65A, SME4388, 20:05:11:00-20:05:20:00 small tap, tapping multiple holes
TH65B, SME2577, 01:22:07:00-01:22:12:00 tap with steep chamfer, freeze last frame
TH65C, SME2577, 01:22:53:00-01:23:03:00 tap with no chamfer

SCENE 10.

TH66A, SME4388, 20:26:33:00-20:26:54:00 tapping on multiple holes

SCENE 11.

TH67A, SME4393, 02:04:32:00-02:05:00:00 tapping operation on multiple holes
TH67B, CGS: Taper Tap
Plug Tap
Bottoming Tap

SCENE 12.

TH68A, CGS: Taper Tap
TH68B, SME2652, 00:03:08:00-00:03:21:00
taper tap starting thread

SCENE 13.

TH69A, CGS: Plug Tap
TH69B, SME2577, 01:19:51:00-01:20:01:00
plug tap, tapping hole

SCENE 14.

TH70A, CGS: Bottoming Tap
TH70B, SME2577, 01:23:16:00-01:23:26:00
bottoming tap finishing hole

NARRATION (VO):

THE MAIN DIFFERENCE AMONG TAPS IS THE

AMOUNT OF CHAMFER AT THE CUTTING END.

THE STEEPER THE CHAMFER, THE MORE

GRADUAL THE CUTTING ACTION. THE LESS

CHAMFER, THE GREATER THE CUTTING POWER.

NARRATION (VO):

AS A RULE, THE LONGEST POSSIBLE CHAMFER
ALLOWS THE BEST CUTTING EFFICIENCY, TAP
LIFE, AND SIZE CONTROL.

NARRATION (VO):

THREE COMMONLY USED SOLID TAP FORMS ARE:
THE TAPER TAP,
THE PLUG TAP,
AND THE BOTTOMING TAP.

NARRATION (VO):

THE TAPER TAP HAS THE GREATEST CHAMFER

AND DOES THE LEAST CUTTING OF THE THREE.

IT IS USED TO START THE THREADING.

NARRATION (VO):

THE PLUG TAP HAS AN INTERMEDIATE CHAMFER AND IS A GENERAL PURPOSE TAP.

NARRATION (VO):

THE BOTTOMING TAP HAS THE LEAST CHAMFER AND IS USED FOR FINISHING OPERATIONS.

SCENE 15.

TH71A, SME2632, 02:06:54:00-02:07:06:00 tapping operation

TH71B, SME2632, 02:13:12:00-02:13:32:00 zoom out, tapping operation, alternate shot

TH71C, SME2652, 00:01:52:00-00:02:00:00 two flute tap

TH71D, SME2652, 00:01:30:00-00:01:38:00 four flute tap

SCENE 16.

TH72A, SME2652, 00:03:53:00-00:04:06:00 four flute tap threading TH72B, SME2652, 00:03:25:00-00:03:40:00 two flute tap threading

SCENE 17.

TH73A, still, straight flute tap
TH73B, still, spiral flute tap

SCENE 18.

TH74A, SME4389, 21:22:08:00-21:22:28:00 zoom out, straight tap producing chips

SCENE 19.

TH75A, **SME2577**, **01:03:48:00-01:04:00:00** manual spiral tapping operation

NARRATION (VO):

TAPS HAVE FLUTES OR CHANNELS THAT CREATE
CUTTING EDGES. THESE FLUTES ALLOW CHIPS
OUT OF THE HOLE AND CUTTING FLUID IN.
TAPS USUALLY HAVE TWO...,

THREE...,

OR FOUR FLUTES.

NARRATION (VO):

A FOUR-FLUTE TAP CUTS BETTER AND

SMOOTHER BECAUSE IT HAS MORE CUTTING

EDGES. TWO- AND THREE-FLUTE TAPS HAVE

MORE SPACE FOR CHIPS, AND ARE STRONGER.

NARRATION (VO):

TAPS MAY HAVE STRAIGHT...,
OR SPIRAL FLUTES.

NARRATION (VO):

STANDARD STRAIGHT-FLUTE TAPS TEND TO

PRODUCE SMALL CHIPS. ORDINARILY THIS IS

NOT A PROBLEM, BUT IN A BLIND HOLE THESE

CHIPS TEND TO COLLECT AT THE BOTTOM OF

THE HOLE, OR CLOG THE FLUTES.

NARRATION (VO):

SPIRAL-FLUTE TAPS PULL LONGER CHIPS UP
AND OUT OF THE HOLE, MAKING THEM
PARTICULARLY USEFUL IN TAPPING BLIND
HOLES.

SCENE 20.

TH76A, SME4393, 02:06:10:00-02:06:58:00 zoom out, tapping operation on multiple holes

SCENE 21.

TH77A, SME4091, 07:26:28:00-07:26:46:00 tapping operation on multiple holes

SCENE 22.

TH78A, **SME4372**, **02:15:14:00-02:15:26:00** tapping operation

SCENE 23.

TH79A, CGS: Rake/Hook Angle

TH79B, ANI: tap

TH79C, ANI: tap, rake angle

TH79D, ANI: tap, rake angle, center line ANGLE, AND IS DEFINED AS THE ANGLE

TH79E, CGS: Negative Rake TH79F, ANI: negative tap

TH79G, ANI: negative tap, rake lines

TH79H, CGS: Zero Rake TH79I, ANI: zero tap

TH79J, ANI: zero tap, rake lines

TH79K, CGS: Positive Rake TH79L, ANI: positive tap

TH79M, ANI: positive tap, rake lines

NARRATION (VO):

MOST TAPS ARE MADE FROM HIGH-SPEED

STEEL, BUT CARBIDE OR CARBON STEEL IS

SOMETIMES USED. SOLID CARBIDE TAPS CUT

FASTER AND CLEANER, AND LAST LONGER.

NARRATION (VO):

TAPS ARE DESIGNED CHIEFLY TO CUT STEEL,
BUT THERE ARE SPECIAL TAPS FOR WORKING
WITH ALUMINUM, NICKEL ALLOYS, AND CAST
IRON.

--- TOUCH BLACK ---

NARRATION (VO):

HOW MUCH A TAP CUTS PER REVOLUTION

DEPENDS ON THE ANGLE AT WHICH THE

CUTTING TOOTH ON THE DIE CONTACTS THE

WORKPIECE.

NARRATION (VO):

THIS ANGLE IS CALLED THE RAKE OR HOOK

ANGLE, AND IS DEFINED AS THE ANGLE

BETWEEN A LINE THROUGH THE CUTTING FACE

AND A RADIAL LINE FROM THE TOOL CENTER

TO THE TOOTH TIP. GENERALLY, THE MORE

DUCTILE THE MATERIALS, THE GREATER THE

RAKE ANGLE, BECAUSE THE DIE TOOTH CAN

TAKE A BIGGER BITE OUT OF SOFTER

MATERIALS.

SCENE 24.

TH80A, SME4372, 02:35:44:00-02:36:02:00 tapping operation on two holes TH80B, SME2577, 01:23:59:00-01:24:08:00 tapping too fast, tool breakage TH80C, SME2632, 02:09:32:00-02:09:44:00 tapping with lubrication TH80D, SME4111, 02:33:16:00-02:33:34:00 tapping multiple holes with lubrication, alternate shot

SCENE 25.

TH81A, SME4388, 20:04:15:00-20:04:38:00 forming tap used on multiple holes
TH81B, zoom out, still, thread forming tap
TH81C, SME4388, 20:01:58:00-20:02:09:00 zoom out, forming tap used on multiple holes

TH81D, SME2632, 02:14:28:00-02:14:44:00 thread forming tap operation, alternate shot

SCENE 26.

TH82A, SME4389, 21:22:30:00-21:22:40:00 manual tapping

TH82B, SME4389, 21:20:13:00-21:20:28:00 hole being drilled

TH82C, SME4389, 21:30:53:00-21:31:03:00 zoom out, placing tap in tap wrench TH82D, SME4389, 21:21:50:00-21:22:14:00 tapping operation on hole

SCENE 27.

TH83A, SME4386, 19:02:27:00-19:02:45:00 zoom out, flexible arm used to tap part

NARRATION (VO):

TAPPING SPEED IS CRITICAL IN DETERMINING HOW A TAP CUTS, BECAUSE IT AFFECTS

THREAD QUALITY AND TAP LIFE. TOO MUCH SPEED CAUSES THE TAP TO BECOME DULL OR BREAK, OR TEARS UP THE METAL. HIGH-SPEED TAPPING ALSO MAKES IT DIFFICULT TO ACHIEVE GOOD LUBRICATION AND CHIP REMOVAL.

NARRATION (VO):

FOR SOFTER METALS, OR WHERE IT IS

IMPORTANT NOT TO MAKE CHIPS, THREAD

FORMING TAPS OR ROLL TAPS MAY BE USED.

ROLL TAPS HAVE NO CUTTING EDGES OR

FLUTES. THEY GENERATE MORE FRICTIONAL

HEAT THAN STANDARD TAPS, BECAUSE THEY

FORM RATHER THAN CUT THE THREAD.

--- TOUCH BLACK ---

NARRATION (VO):

TAPPING IS DONE MANUALLY FOR LOW-VOLUME PRODUCTION. MANUAL TAPPING INVOLVES

DRILLING A HOLE...,

PUTTING A TAP IN A TAP WRENCH...,

NARRATION (VO):

IN AN OPERATION WHERE PRECISION TAP

AND MANUALLY THREADING THE HOLE.

Copyright © 2010 Society of Manufacturing Engineers

POSITIONING IS NOT CRITICAL, IT MAY BE PRACTICAL TO MANUALLY PLACE THE TAPPING TOOL IN THE HOLE. IN THESE CASES, FLEXIBLE ARMS CAN BE USED.

SCENE 28.

TH84A, SME2632, 02:01:38:00-02:01:47:00 dedicated machine tool tapping

TH84B, SME4387, 19:12:28:00-19:12:34:00 tapping on lathe

TH84C, SME4308, 08:10:12:00-08:10:27:00 zoom in, tapping on mill

TH84D, SME4388, 20:03:28:00-20:03:36:00 zoom in, tapping on machining center TH84E, still, drill & tap machine TH84F, tapping with drill & tap machine TH84G, SME4393, 03:21:42:00-03:22:11:00 zoom out, multi-spindle tapping operation

NARRATION (VO):

FOR HIGHER VOLUMES, TAPPING IS MOST COMMONLY ACCOMPLISHED USING DEDICATED TAPPING MACHINE TOOLS...,

LATHES...,

MILLS...,

MACHINING CENTERS..., DRILL AND TAP MACHINES..., OR SPECIALIZED MULTI-SPINDLE TAPPING MACHINES.

--- TOUCH BLACK ---

SCENE 29.

TH85A, SME4372, 02:16:27:00-02:16:39:00 tapping operation

NARRATION (VO):

FOR ACCURATELY POSITIONING AND PROPERLY DRIVING TAPS, THREE TECHNIQUES ARE USED IN TAPPING OPERATIONS.

SCENE 30.

TH86A, SME2632, 02:02:28:00-02:02:48:00 floating head tap, tapping

NARRATION (VO):

THE FIRST TECHNIQUE USES A TAP HOLDER THAT CAN ACCOMMODATE BOTH MISALIGNMENT AND DIFFERENCES IN TENSION AND COMPRESSION BETWEEN THE TAP AND SPINDLE. THIS IS CALLED A FLOATING HEAD.

SCENE 31.

TH87A, SME2632, 02:06:29:00-02:06:45:00

NARRATION (VO):

rigid/synchronous tap driving operation TH87B, SME4352, 04:40:09:00-04:40:49:00 zoom out, rigid/synchronous tap driving operation on multiple holes, alternate shot

THE SECOND REQUIRES THE ABILITY TO

PROGRAM THE SPINDLE DRIVE SO THAT THE

TORQUE DELIVERED TO THE TAP IS EXACTLY

WHAT IS NEEDED. THIS IS CALLED RIGID OR

SYNCHRONOUS TAP DRIVING.

SCENE 32.

TH88A, SME4387, 19:09:56:00-19:10:18:00 zoom in, tapping head operation

SCENE 33.

TH89A, SME4387, 19:08:34:00-19:09:02:00

tapping operation

TH89B, CGS: Accuracy Required
Production Volume
Tap Size

TH89C, SME4372, 02:37:15:00-02:37:24:00

rigid tapping operation

TH89D, SME4388, 20:01:31:00-20:01:40:00 zoom out, tapping using self-reversing head

NARRATION (VO):

THE THIRD TECHNIQUE INVOLVES ADDING A
TAPPING HEAD TO AN EXISTING MACHINE
TOOL. THIS TAPPING HEAD ADAPTS THE
MACHINE TOOL'S SPINDLE TORQUE TO THE
TAPPING OPERATION, MAINTAINING THE BEST
TAP CUTTING SPEED AND REVERSING
DIRECTION AT THE END OF THE TAPPING
STROKE. THESE SELF-REVERSING TAPPING
HEADS ARE OFTEN PROGRAMMABLE.

NARRATION (VO):

DETERMINING WHICH OF THESE THREE

TECHNIQUES IS BEST SUITED FOR A SPECIFIC

TAPPING OPERATION DEPENDS ON THE

ACCURACY REQUIRED, PRODUCTION VOLUME,

AND TAP SIZE. RIGID TAPPING CAN CONTROL

THE TENSION AND COMPRESSION ON THE TAP,

BUT PROCESSES AT A SLOWER RATE THAN

SELF-REVERSING HEADS.

--- FADE TO BLACK ---