SME Logo

From SME.org

Membership


NAMRI/SME


 

NAMRI/SME S.M. Wu Research Implementation Award Winners

Share this
2015
John S. Agapiou, PhD, FSME, General Motors Corp.
 
John Agapiou is recognized for his innovative design of four-flute and modified three-flute, solid-carbide drills to produce top-quality bores in one or two passes as opposed to the traditional three to six passes, with sizable savings in cycle time, investment cost, tooling and maintenance. This technology was disseminated throughout the holemaking processes in GM Powertrain with thousands of such tools used in production and adapted by most of the automotive industries today. The multiflute point designs have spread to different types of holemaking tools and subsequently commercialized by many tooling companies to achieve complex part features or precision bores. The NAMRC paper referenced with the award is: "An Evaluation of Advanced Drill Body and Point Geometries in Drilling Cast Iron." Transactions of NAMRI/SME, Volume 19, 1991.
2014
S. Jack Hu, PhD, University of Michigan

S. Jack Hu is recognized for the innovative method he developed “for systematically identifying sources of quality variation in assembly systems. This method has been implemented in the Chrysler Corporation and the General Motors Co., resulting in significant quality improvements and economic benefits.” The NAMRC paper referenced with the award is: Hu, S.J. and Wu, S.M., “Identifying Sources of Variation in Automobile Assembly Using Principal Component Analysis,” Transactions of NAMRI/SME, Volume 20, 1992.
2013
Jun Ni, University of Michigan

Jun Ni is recognized for his contribution to the establishment of the machine tool error modeling and compensation method that enables precision machining and advances the fundamental knowledge of the machine tool thermal error mode and analysis approach. The method developed has been successfully implemented in industry, including at General Motors, Chrysler, Saginaw Machine Systems and Boeing. Ni's research was originally presented in the following paper: “Error Link Metrology and Flexible Error Synthesis Model for Correcting Quasi-Static Machine Errors,” Transactions of NAMRI/SME, Volume XXII, 1994.
2012
Kevin Scott Smith, University of North Carolina at Charlotte; Jerry Halley, Tech Manufacturing; and Robert G. Wilhelm, University of North Carolina at Charlotte 

Smith, Halley and Wilhelm’s research applied high-speed machining technology and novel tool path planning approaches to machine solid billets of material to typical sheet metal thicknesses, enabling cost-effective machining of complex monolithic structures with extremely thin walls and unsupported floors. This technology directly led to the widespread replacement of aircraft structural elements previously fabricated by riveting of many complex sheet metal stampings with lighter, stronger, more robust and less-expensive monolithic components. Smith et al.'s research was originally presented in the following papers: "Forced Vibration, Chatter, Accuracy, in High Speed Milling," Transactions of NAMRI, Vol. 13; "NC Programming for Quality in Milling," Transactions of NAMRI, Vol. 16; "Sensor-Based Supervision of CNC Machining," Transactions of NAMRI, Vol. 20; and "Beyond Geometry: Process Planning for High Speed Machining of Monolithic Structures," Transactions of NAMRI, Vol. 34.
2011
C. Richard Liu, Purdue University

The 2011 award recipient's research has created "single step finish/superfinish hard machining" for performing roughing, finishing and superfinishing processes within a single setup, and has developed a new market and a science base for engineering a new generation of processes, machine tools, cutting tools and manufacturing systems. This research has been successfully applied in manufacturing load-carrying components due to its significant benefits over competing technologies. Liu's research was originally presented in the following papers: "An Error Correction Method for CNC Machine Tools Using Reference Parts," introduced at the 22nd North American Manufacturing Research Conference and published in the Transactions of NAMRI/SME 1994, Vol. 22 and "Residual Stress Formation Mechanism and Its Control by Sequential Cuts," introduced at the 28th North American Manufacturing Research Conference and published in the Transactions of NAMRI/SME 2000, Vol. 28.
2010
Richard E. DeVor and S.G. Kapoor, University of Illinois at Urbana Champaign

The 2010 award recipients are recognized for their innovative research beginning in the early 1980s on the development of mechanistic simulation models for machining processes. These simulation models have commercially benefited industry by providing guidance in terms of product design and process planning, and in supporting the design of machine tool systems at both the conventional and microscales. This work was originally outlined in the paper "Analysis of Cutting Forces in Face Milling of High Silicon Casting Aluminum Alloys," (PDF) which was introduced at the 10th North American Manufacturing Research Conference and published in the Transactions of NAMRI/SME 1982, Vol. 11.
2009
William R.D. Wilson, Northwestern University

The 2009 award recipient is recognized for the establishment of fundamental contact mechanics in analyzing surface asperities and lubrication film thickness to enable the development of more accurate friction models in metalforming operations, especially the optimization of metal rolling processes. Wilson's research was originally outlined in "Flattening of Workpiece Surface Asperities in Metal Forming Processes," which was introduced at the 11th North American Manufacturing Research Conference and published in the Transactions of NAMRI/SME 1983, Vol. 11, and "Strategy for Friction Modeling in Computer Simulations of Metalforming Processes," which was presented at the 16th North American Manufacturing Research Conference and published in the Transactions of NAMRI/SME 1988, Vol. 16.
2008
Jae M. Lee, Chi-Hung Shen and Ernie Wasserbaech, General Motors Corp.

The 2008 award recipients were recognized for having patented and commercialized the innovative abrasive belt camlobe grinder, which enabled simultaneous grinding of all of the camlobes as opposed to traditional sequential grinding. This advance set a significant new standard in high-value/low-cost manufacture of this critical automotive component. Lee, Shen and Wasserbaech's research was originally introduced in the paper, "Camshaft Grinding Using Coated Abrasive Belts," which was presented at the 21st North American Manufacturing Research Conference and published in the Transactions of NAMRI/SME 1993, Vol. 21.
2007
Paul K. Wright, University of California, Berkeley

The 2007 award recipient is recognized for the creation of the "open architecture control" that expanded machine tool control and enabled both better connections to high-end CAD images so that more complex surfaces could be machined, and the use of more sensors for in-process inspection and real-time adjustments. This work was presented work in the paper, "Self-Sustaining, Open-System Machine Tools," by Israel Greenfeld, Fred B. Hansen and Paul K. Wright, which was presented at the 17th North American Manufacturing Research Conference and published in the Transactions of NAMRI/SME 1989, Vol. 17.
2006
Taylan Altan, The Ohio State University; Goverdhan D. Lahoti, The Timken Co.; and Soo Ik Oh, Seoul National University

The three recipients of the 2006 NAMRI/SME S.M. Wu Research Implementation Award were recognized for developing concepts and methods related to the finite element modeling (FEM) of forming problems, which was later commercialized into a FEM package known as DEFORM. Altan, Oh and Lahoti originally presented their work in a 1981 NAMRC paper, "ALPID - A General Purpose FEM Program for Metal Forming," which was originally presented at the 1981 North American Metalworking Research Conference and published in the Transactions of NAMRI/SME 1981, Vol. 9.